Schmidt Institute of Physics of the Earth, RAS
Geophysical Center RAS
Moscow, Russian Federation
Schmidt Institute of Physics of the Earth RAS
Moscow, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Moscow, Russian Federation
from 01.01.2003 until now
Nothern Energetics Research Centre KSC RAS (Research Associate)
Geophysical Center of the Russian Academy of Sciences
Apatity, Murmansk, Russian Federation
Geophysical Center of the Russian Academy of Sciences
Irkutsk, Russian Federation
Geophysical Center of the Russian Academy of Sciences
Moscow, Russian Federation
Ufa University of Science and Technology
Moscow, Russian Federation
Moscow, Russian Federation
UDK 550.383.2 Общий географический характер магнитного поля Земли.
The review offered for the first time in the Russian scientific literature is devoted to various aspects of the problem of the impact of space weather on ground transport systems. An analysis of available information indicates that space weather disturbances can affect rail infrastructure through both direct and indirect effects on system components. One of the main hazards is geomagnetically induced currents (GICs) in grounded extended structures excited by the geomagnetic field disturbances. The telluric electric fields and currents associated with them can cause power outages and malfunctions in the railway automation track circuits. Indirect impact is possible through disturbances in the stable supply of electricity, disturbances in communication systems and in the appearance of positioning errors in global navigation satellite systems. The review provides information necessary for engineers of transport and energy systems about the main factors of space weather that could pose a threat to such systems. Examples of the influence of geomagnetic disturbances on the automatic signaling of the northern sections of Russian Railways are given. The prospects for monitoring space weather and the aurora oval for the needs of Russian Railways are discussed.
space weather, railway automation, geoinduced currents, global navigation satellite systems, radio communication, magnetic storms
1. Afraimovich E. L., Gavrilyuk N. S., Demyanov V. V., et al. Failures in the functioning of GPS-GLONASS satellite navigation systems due to powerful radio emission from the sun during solar flares on December 6, 13, 2006 and October 28, 2003 // Space research. - 2009a. - Vol. 47, no. 2. - P. 146-157.
2. Afraimovich E. L., Perevalova N. P. GPS monitoring of the Earth’s upper atmosphere. - Irkutsk : Publishing house of GU SC RVH VSNC SO RAMS, 2006. - P. 479.
3. Afraimovich E., Astafyeva E., Demyanov V., et al. Mid-latitude amplitude scintillation of GPS signals and GPS performance slips // Advances in Space Research. - 2009b. - Vol. 43, no. 6. - P. 964-972. - DOI:https://doi.org/10.1016/j.asr.2008.09.015.; ; EDN: https://elibrary.ru/LLSVIP
4. Alekseev D., Kuvshinov A., Palshin N. Compilation of 3D global conductivity model of the Earth for space weather applications // Earth, Planets and Space. - 2015. - T. 67, № 1. - S. 108. - DOI:https://doi.org/10.1186/s40623-015-0272-5.; ; EDN: https://elibrary.ru/UFAWKH
5. Alma E. Measures against geomagnetic disturbances in the entire DC track circuit for automatic signaling systems // Infrastructure Resilience Risk Reporter. - 1956. - Vol. 1, no. 10. - P. 10-27. - (in Swedish).
6. Astafyeva E., Yasyukevich Y., Maksikov A., et al. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems // Space Weather. - 2014. - Vol. 12, no. 7. - P. 508-525. - DOI:https://doi.org/10.1002/2014SW001072.; ; EDN: https://elibrary.ru/UETHTZ
7. Basu S., Basu S., Makela J., et al. Large magnetic storm-induced nighttime ionospheric flows at midlatitudes and their impacts on GPS-based navigation systems // Journal of Geophysical Research: Space Physics. - 2008. - Vol. 113, A3. - A00A06. - DOI:https://doi.org/10.1029/2008JA013076.; ; EDN: https://elibrary.ru/CWGGZI
8. Belakhovsky V., Pilipenko V., Engebretson M., et al. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines // Journal of Space Weather and Space Climate. - 2019. - Vol. 9. - A18. - DOI:https://doi.org/10.1051/swsc/2019015.; ; EDN: https://elibrary.ru/SVNGAS
9. Béland J., Small K. Space Weather Effects on Power Transmission Systems: The Cases of Hydro-Québec and Transpower New ZealandLtd // Effects of Space Weather on Technology Infrastructure / ed. by A. Daglis. - Dordrecht : Springer Netherlands, 2005. - P. 287-299.
10. Belov A., Gaidash S., Eroshenko E., et al. Effects of strong geomagnetic storms on Northern railways in Russia // 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. - St. Petersburg, Russia : IEEE, 2007. - P. 280-282. - DOI:https://doi.org/10.1109/EMCECO.2007.4371710.; ; EDN: https://elibrary.ru/MRINSV
11. Bernhardt O. I. Influence of space weather factors on the operation of radio facilities // Solar-terrestrial physics. - 2017. - Vol. 3, no. 3. - P. 40-60. - DOI:https://doi.org/10.12737/szf-33201705.
12. Blagoveshchensky D. V. Influence of geomagnetic storms/substorms on HF propagation (review) // Geomagnetism and Aeronomy. - 2013. - Vol. 53, no. 4. - P. 435-450. - DOI:https://doi.org/10.7868/S0016794013040032.; ; EDN: https://elibrary.ru/QBZNDV
13. Boteler D. Modeling geomagnetic interference on railway signaling track circuits // Space Weather. - 2021. - Vol. 19, no. 1. - P. 18. - DOI:https://doi.org/10.1029/2020SW002609.; ; EDN: https://elibrary.ru/JSMAMY
14. Chinkin V., Soloviev A., Pilipenko V., et al. Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data // Journal of Atmospheric and Solar-Terrestrial Physics. - 2021. - Vol. 212. - P. 105514. - DOI:https://doi.org/10.1016/j.jastp.2020.105514.; ; EDN: https://elibrary.ru/WMFQRN
15. Cid C., Saiz E., Guerrero A., et al. A Carrington-like geomagnetic storm observed in the 21st century // Journal of Space Weather and Space Climate. - 2015. - Vol. 5. - A16. - DOI:https://doi.org/10.1051/swsc/2015017.; ; EDN: https://elibrary.ru/UQUFWB
16. Demyanov V. V., Yasyukevich Y. V. Mechanisms of the impact of irregular geophysical factors on the functioning of satellite radio navigation systems. - Irkutsk : ISU Publishing House, 2014. - P. 349.
17. Dimmock A., Rosenqvist L., Hall J., et al. The GIC and geomagnetic response over Fennoscandia to the 7-8 September 2017 geomagnetic storm // Space Weather. - 2019. - Vol. 17. - P. 989-1010. - DOI:https://doi.org/10.1029/2018SW002132.; ; EDN: https://elibrary.ru/EPMRSG
18. Eroshenko E., Belov A., Boteler D., et al. Effects of strong geomagnetic storms on Northern railways in Russia // Advances in Space Research. - 2010. - Vol. 46, no. 9. - P. 1102-1110. - DOI:https://doi.org/10.1016/j.asr.2010.05.017.; ; EDN: https://elibrary.ru/GKXZBR
19. Garmabaki A., Marklund S., Thaduri A., et al. Underground pipelines and railway infrastructure - failure consequences and restrictions // Structure and Infrastructure Engineering. - 2019. - Vol. 16, no. 3. - P. 412-430. - DOI:https://doi.org/10.1080/15732479.2019.1666885.
20. Gaunt C. Why space weather is relevant to electrical power systems // Space Weather. - 2016. - Vol. 14, no. 1. - P. 2-9. - DOI:https://doi.org/10.1002/2015SW001306.
21. Goodman J. Space Weather & Telecommunications. - Springer New York, 2005. - P. 382. - DOI:https://doi.org/10.1007/b102193.
22. Gusev Y., Lkhamdondog A., Monakov Y., et al. Evaluating the Effect of Geoinduced Currents on the Startup Modes of Power Transformers // Power Technology and Engineering. - 2020. - Vol. 54, no. 2. - P. 285-290. - DOI:https://doi.org/10.1007/s10749-020-01202-1.; ; EDN: https://elibrary.ru/LKRYYU
23. Huang w., Aa E., Shen H., et al. Statistical study of GNSS L-band solar radio bursts // GPS Solutions. - 2018. - Vol. 22, no. 4. - P. 114. - DOI:https://doi.org/10.1007/s10291-018-0780-4.; ; EDN: https://elibrary.ru/YJPUOD
24. Kappenman J. G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms // Space Weather. - 2005. - Vol. 3, no. 8. - S08C01. - DOI:https://doi.org/10.1029/2004SW000128.
25. Kasinsky V. V., Ptitsyna N. G., Lyakhov N. N., et al. Influence of geomagnetic disturbances on the operation of railway automation and telemechanics // Geomagnetism and Aeronomy. - 2007. - Vol. 47, no. 5. - P. 714-718.; EDN: https://elibrary.ru/IAQLUJ
26. Kintner P., Ledvina B., Paula E. de. GPS and ionospheric scintillations // Space Weather. - 2007. - Vol. 5, no. 9. - P. 23. - DOI:https://doi.org/10.1029/2006SW000260.
27. Knipp D., Fraser B., Shea M., et al. On the little-known consequences of the 4 August 1972 ultra-fast coronal mass ejecta: Facts, commentary, and call to action // Space Weather. - 2018. - Vol. 16, no. 11. - P. 1635-1643. - DOI:https://doi.org/10.1029/2018SW002024.; ; EDN: https://elibrary.ru/LCIPOI
28. Kostrominov A. M., Lozhkin R. O. Influence of geoinduced currents on choke-transformers of rail circuits of railway automation // News of St. Petersburg University of Railways and Communications. - 2021. - Vol. 18, no. 2. - P. 222-228. - DOI:https://doi.org/10.20295/1815-588X-2021-2-222-228.; ; EDN: https://elibrary.ru/AJCGFH
29. Kozelov B. V., Chernous S. A., Shagimuratov I. I., et al. Solar geophysical factors that could have caused errors in GPS operation during the NATO military exercise "Trident Juncture" from 25/10/2018 to 7/11/2018 // Proceedings of the XLII Annual Seminar «Physics of Auroral Phenomena». Vol. 42. - Apatity : Kola Science Center of the Russian Academy of Sciences, 2019. - P. 48-52. - DOI:https://doi.org/10.25702/KSC.2588-0039.2019.42.48-52.; ; EDN: https://elibrary.ru/ZFLRKH
30. Kozyreva O., Pilipenko V., Sokolova E., et al. Geomagnetic and telluric field variability as a driver of geomagnetically induced currents // Springer Proceedings in Earth and Environmental Sciences. - Springer International Publishing, 2019b. - P. 297-307. - DOI:https://doi.org/10.1007/978-3-030-21788-4_26.; ; EDN: https://elibrary.ru/CBLQJG
31. Kozyreva O., Pilipenko V., Krasnoperov R., et al. Fine structure of substorm and geomagnetically induced currents // Annals of Geophysics. - 2019a. - Vol. 62. - P. 21. - DOI:https://doi.org/10.4401/ag-8198.; ; EDN: https://elibrary.ru/BYXRBA
32. Kozyreva O. V., Pilipenko V. A., Dobrovolsky M. N., et al. Database of geomagnetic observations in the Russian Arctic and its use to assess the impact of space weather on technological systems // Solar-terrestrial physics. - 2022. - Vol. 8, no. 1. - P. 39-50. - DOI:https://doi.org/10.12737/szf-81202205.; DOI: https://doi.org/10.12737/stp-81202205; EDN: https://elibrary.ru/LWEUGT
33. Krausmann E., Andersson E., Russell T., et al. Space weather and rail: findings and outlook. - Luxembourg : Publications Office of the European Union, 2015. - P. 29. - DOI:https://doi.org/10.2788/211456.
34. Liu L., Ge X., Zong W., et al. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway // Space Weather. - 2016. - Vol. 14, no. 10. - P. 754-763. - DOI:https://doi.org/10.1002/2016SW001411.; ; EDN: https://elibrary.ru/XTTBYX
35. Love J., Hayakawa H., Cliver E. Intensity and impact of the New York railroad superstorm of May 1921 // Space Weather. - 2019. - Vol. 17, no. 8. - P. 1281-1292. - DOI:https://doi.org/10.1029/2019SW002250.; ; EDN: https://elibrary.ru/LTJDFT
36. Molinski T. Why utilities respect geomagnetically induced currents // Journal of Atmospheric and Solar-Terrestrial Physics. - 2002. - Vol. 64, no. 16. - P. 1765-1778. - DOI:https://doi.org/10.1016/S1364-6826(02)00126-8.; EDN: https://elibrary.ru/BBFQEH
37. Newell P., Liou K., Zhang Y., et al. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. - 2014. - Vol. 12, no. 6. - P. 368-379. - DOI:https://doi.org/10.1002/2014sw001056.; DOI: https://doi.org/10.1002/2014SW001056; EDN: https://elibrary.ru/UVZMCJ
38. Niska S., Schunnesson H., Kumar U. Measurements and analysis of electromagnetic interference in a railway signal box-a case study // International Journal of Reliability, Quality and Safety Engineering. - 2011. - Vol. 18, no. 03. - P. 285-303. - DOI:https://doi.org/10.1142/S0218539311004147.
39. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways. - Springer Berlin, Heidelberg, 2013. - P. 528. - DOI:https://doi.org/10.1007/978-3-642-30281-7.
40. Oughton E., Skelton A., Horne R., et al. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure // Space Weather. - 2017. - Vol. 15, no. 1. - P. 65-83. - DOI:https://doi.org/10.1002/2016SW001491.; ; EDN: https://elibrary.ru/YDRPBB
41. Patterson C., Wild J., Boteler D. Modeling the Impact of Geomagnetically Induced Currents on Electrified Railway Signaling Systems in the United Kingdom // Space Weather. - 2023. - Vol. 21, no. 3. - e2022SW003385. - DOI:https://doi.org/10.1029/2022SW003385.
42. Pilipenko A. V. The impact of space weather on terrestrial technological systems // Solar-terrestrial physics. - 2021. - Vol. 7, no. 3. - P. 72-110. - DOI:https://doi.org/10.12737/szf-73202106.
43. Pilipenko V. A., Bravo M., Romanova N. V., et al. Geomagnetic and ionospheric responses to the interplanetary shock on March 17, 2015 // Physics of the Earth. - 2018. - No. 5. - P. 61-80. - DOI:https://doi.org/10.1134/S0002333718050125.; ; EDN: https://elibrary.ru/XZZDPV
44. Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems // Surveys in Geophysics. - 2002. - Vol. 23. - P. 71-90. - DOI:https://doi.org/10.1023/A:1014816009303.; ; EDN: https://elibrary.ru/MAJJZT
45. Ptitsyna N. G., Tyasto M. I., Kasinsky V. V., et al. Influence of space weather on technical systems: failures of railway equipment during geomagnetic storms // Solar-terrestrial physics. - 2008a. - Vol. 12-2 (12-5). - 360.
46. Ptitsyna N. G., Villoresi D., Dorman L. I., et al. Natural and technogenic low-frequency magnetic fields as factors potentially hazardous to health // Progress in physical sciences. - 1998. - Vol. 168, no. 7. - P. 789-791.
47. Ptitsyna N., Kasinskii V., Villoresi G., et al. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway // Advances in Space Research. - 2008b. - Vol. 42, no. 9. - P. 1510-1514. - DOI:https://doi.org/10.1016/j.asr.2007.10.015.; ; EDN: https://elibrary.ru/LLMZQJ
48. Ptitsyna N., Tyasto M., Kassinskii V., et al. Do natural magnetic fields disturb railway telemetry? // 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. - St. Petersburg, Russia : IEEE, 2007. - 288-290. - DOI:https://doi.org/10.1109/EMCECO.2007.4371713.; ; EDN: https://elibrary.ru/MRIDRR
49. Pulkkinen A., Bernabeu E., Thomson A., et al. Geomagnetically induced currents: Science, engineering, and applications readiness // Space Weather. - 2017. - Vol. 15, no. 7. - P. 828-856. - DOI:https://doi.org/10.1002/2016SW001501.; ; EDN: https://elibrary.ru/YEXIVK
50. Qian X., Tian H., Yin Y. Geomagnetic storms’ influence on intercity railway track circuit // Urban Rail Transit. - 2016. - Vol. 2, no. 2. - P. 85-91. - DOI:https://doi.org/10.1007/s40864-016-0040-2.; ; EDN: https://elibrary.ru/YDNCNN
51. Sakharov I. A., Katkalov Y. V., Selivanov V. N., et al. Registration of geoinduced currents in the regional power system // Practical aspects of heliogeophysics: tr. 11th year. conf. «Plasma physics in the solar system». - Moscow : Space Research Institute of the Russian Academy of Sciences, 2016. - P. 134-145.
52. Sakharov I. A., Kudryashova N. V., Danilin A. N., et al. The impact of geomagnetic disturbances on the operation of railway automation // Bulletin of MIIT. - 2009. - Vol. 21. - P. 107-111.
53. Sakharov Ya. A., Kudryashova N., Danilin A., et al. Geomagnetic disturbances and railway automatic failures // 8th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. - St-Petersburg, Russia : IEEE, 2009. - P. 235-236.
54. Sato H., Jakowski N., Berdermann J., et al. Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies // Space Weather. - 2019. - Vol. 17, no. 6. - P. 816-826. - DOI:https://doi.org/10.1029/2019SW002198.; ; EDN: https://elibrary.ru/ORXQJW
55. Thaduri A., Galar D., Kumar U. Space weather climate impacts on railway infrastructure // International Journal of System Assurance Engineering and Management. - 2020. - Vol. 11, S2. - P. 267-281. - DOI:https://doi.org/10.1007/s13198-020-01003-9.; ; EDN: https://elibrary.ru/CLJJGM
56. Trishchenko L. D. Geomagnetic disturbances and power supply and wire communication systems // «Plasma heliophysics». Vol. 2. - Moscow : Fizmatlit, 2008. - P. 213-219.
57. Troshichev O. A., Sormakov A. D. Space weather monitoring based on ground-based magnetic measurements // Meteorology and Hydrology. - 2021. - Vol. 3. - P. 12-27. - DOI:https://doi.org/10.52002/0130-2906-2021-3-12-27.; ; EDN: https://elibrary.ru/TMUUIV
58. Tsubouchi K., Omura Y. Long-term occurrence probabilities of intense geomagnetic storm events // Space Weather. - 2007. - Vol. 5, no. 12. - P. 1-12. - DOI:https://doi.org/10.1029/2007SW000329.
59. Vakhnina V. V. Modeling of operation modes of power transformers of power supply systems during geomagnetic storms. - Togliatti State University, 2012. - P. 103.
60. Vakhnina V. V., Kuvshinov A. A., Shapovalov V. A., et al. Mechanisms of the impact of quasi-permanent geoinduced currents on electrical networks. - Moscow : Infra-Engineering, 2018. - P. 256.
61. Viljanen A., Pulkkinen A., Pirjola R., et al. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system // Space Weather. - 2006. - Vol. 4, no. 10. - S10004. - DOI:https://doi.org/10.1029/2006SW000234.; ; EDN: https://elibrary.ru/MYWILH
62. Vorobev A., Pilipenko V., Krasnoperov R., et al. Short-term forecast of the auroral oval position on the basis of the «virtual globe» technology // Russian Journal of Earth Sciences. - 2020. - Vol. 20, no. 6. - P. 1-9. - DOI:https://doi.org/10.2205/2020ES000721.; ; EDN: https://elibrary.ru/ZAKPCK
63. Warnant R., Lejeune S., Bavier M. Space weather influence on satellite-based navigation and precise positioning // Space Weather. Astrophysics and Space Science Library. Vol. 344 / ed. by J. Lilensten. - Dordrechtr : Springer, 2007. - P. 129-146. - DOI:https://doi.org/10.1007/1-4020-5446-7_14.
64. Wik M., Pirjola R., Lundstedt H., et al. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems // Annales Geophysicaer. - 2009. - Vol. 27, no. 4. - P. 1775-1787. - DOI:https://doi.org/10.5194/angeo-27-1775-2009.; ; EDN: https://elibrary.ru/NALPTL
65. Yasyukevich Y., Vasilyev R., Ratovsky K. Small-scale ionospheric irregularities of auroral origin at mid-latitudes during the 22 June 2015 magnetic storm and their effect on GPS positioning // Remote Sensingr. - 2020. - Vol. 12, no. 10. - P. 1579. - DOI:https://doi.org/10.3390/rs12101579.; ; EDN: https://elibrary.ru/KRSNYX
66. Yasyukevich Y. V., Yasyukevich A., Astafyeva E. How modernized and strengthened GPS signals enhance the system performance during solar radio bursts // GPS Solutions. - 2021. - Vol. 25, no. 2. - P. 12. - DOI:https://doi.org/10.1007/s10291-021-01091-5.; ; EDN: https://elibrary.ru/YGJVKJ
67. Zakharov V. I., Chernyshov A. A., Milokh V., et al. Influence of the ionosphere on the parameters of GPS navigation signals during a geomagnetic substorm // Geomagnetism and Aeronomy. - 2020. - Vol. 60, no. 6. - P. 769-782. - DOI:https://doi.org/10.31857/S0016794020060152.; ; EDN: https://elibrary.ru/OXAWDL
68. Zhang J., Wang C., Sun T., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation // Space Weather. - 2015. - Vol. 13, no. 10. - P. 643-655. - DOI:https://doi.org/10.1002/2015sw001263.