Влияние космической погоды на надежность функционирования транспортных систем на высоких широтах
Аннотация и ключевые слова
Аннотация (русский):
Предлагаемый впервые в отечественной научной литературе обзор посвящен различным аспектам проблемы воздействия космической погоды на наземные транспортные системы. Анализ имеющейся информации показывает, что возмущения космической погоды могут повлиять на железнодорожную инфраструктуру как из-за прямого, так и косвенного воздействия на компоненты системы. Одним из основных факторов являются геоиндуцированные токи в заземленных протяженных конструкциях, возбуждаемые при возмущениях геомагнитного поля. Связанные с ними теллурические электрические поля и токи могут вызывать нарушения электроснабжения и сбои в функционировании рельсовых цепей железнодорожной автоматики. Косвенное воздействие возможно через нарушения стабильной подачи электроэнергии, нарушения в системах связи и в появлении ошибок местоопределения в навигационных спутниковых системах. В обзоре приведены необходимые для инженеров транспортных и энергетических систем сведения об основных факторах космической погоды, которые могли бы представлять угрозу для таких систем. Приведены примеры влияния геомагнитных возмущений на работу сигнализации северных участков Российских железных дорог (РЖД). Обсуждаются перспективы мониторинга в реальном времени и\textbf{?} прогноза космической погоды и полярных сияний для нужд РЖД.

Ключевые слова:
космическая погода, железнодорожная автоматика, геоиндуцированные токи, глобальные навигационные спутниковые системы, радиосвязь, магнитные бури
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Afraimovich E. L., Gavrilyuk N. S., Demyanov V. V., et al. Failures in the functioning of GPS-GLONASS satellite navigation systems due to powerful radio emission from the sun during solar flares on December 6, 13, 2006 and October 28, 2003 // Space research. - 2009a. - Vol. 47, no. 2. - P. 146-157.

2. Afraimovich E. L., Perevalova N. P. GPS monitoring of the Earth’s upper atmosphere. - Irkutsk : Publishing house of GU SC RVH VSNC SO RAMS, 2006. - P. 479.

3. Afraimovich E., Astafyeva E., Demyanov V., et al. Mid-latitude amplitude scintillation of GPS signals and GPS performance slips // Advances in Space Research. - 2009b. - Vol. 43, no. 6. - P. 964-972. - DOI:https://doi.org/10.1016/j.asr.2008.09.015.

4. Alekseev D., Kuvshinov A., Palshin N. Compilation of 3D global conductivity model of the Earth for space weather applications // Earth, Planets and Space. - 2015. - Т. 67, № 1. - С. 108. - DOI:https://doi.org/10.1186/s40623-015-0272-5.

5. Alma E. Measures against geomagnetic disturbances in the entire DC track circuit for automatic signaling systems // Infrastructure Resilience Risk Reporter. - 1956. - Vol. 1, no. 10. - P. 10-27. - (in Swedish).

6. Astafyeva E., Yasyukevich Y., Maksikov A., et al. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems // Space Weather. - 2014. - Vol. 12, no. 7. - P. 508-525. - DOI:https://doi.org/10.1002/2014SW001072.

7. Basu S., Basu S., Makela J., et al. Large magnetic storm-induced nighttime ionospheric flows at midlatitudes and their impacts on GPS-based navigation systems // Journal of Geophysical Research: Space Physics. - 2008. - Vol. 113, A3. - A00A06. - DOI:https://doi.org/10.1029/2008JA013076.

8. Belakhovsky V., Pilipenko V., Engebretson M., et al. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines // Journal of Space Weather and Space Climate. - 2019. - Vol. 9. - A18. - DOI:https://doi.org/10.1051/swsc/2019015.

9. Béland J., Small K. Space Weather Effects on Power Transmission Systems: The Cases of Hydro-Québec and Transpower New ZealandLtd // Effects of Space Weather on Technology Infrastructure / ed. by A. Daglis. - Dordrecht : Springer Netherlands, 2005. - P. 287-299.

10. Belov A., Gaidash S., Eroshenko E., et al. Effects of strong geomagnetic storms on Northern railways in Russia // 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. - St. Petersburg, Russia : IEEE, 2007. - P. 280-282. - DOI:https://doi.org/10.1109/EMCECO.2007.4371710.

11. Bernhardt O. I. Influence of space weather factors on the operation of radio facilities // Solar-terrestrial physics. - 2017. - Vol. 3, no. 3. - P. 40-60. - DOI:https://doi.org/10.12737/szf-33201705.

12. Blagoveshchensky D. V. Influence of geomagnetic storms/substorms on HF propagation (review) // Geomagnetism and Aeronomy. - 2013. - Vol. 53, no. 4. - P. 435-450. - DOI:https://doi.org/10.7868/S0016794013040032.

13. Boteler D. Modeling geomagnetic interference on railway signaling track circuits // Space Weather. - 2021. - Vol. 19, no. 1. - P. 18. - DOI:https://doi.org/10.1029/2020SW002609.

14. Chinkin V., Soloviev A., Pilipenko V., et al. Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data // Journal of Atmospheric and Solar-Terrestrial Physics. - 2021. - Vol. 212. - P. 105514. - DOI:https://doi.org/10.1016/j.jastp.2020.105514.

15. Cid C., Saiz E., Guerrero A., et al. A Carrington-like geomagnetic storm observed in the 21st century // Journal of Space Weather and Space Climate. - 2015. - Vol. 5. - A16. - DOI:https://doi.org/10.1051/swsc/2015017.

16. Demyanov V. V., Yasyukevich Y. V. Mechanisms of the impact of irregular geophysical factors on the functioning of satellite radio navigation systems. - Irkutsk : ISU Publishing House, 2014. - P. 349.

17. Dimmock A., Rosenqvist L., Hall J., et al. The GIC and geomagnetic response over Fennoscandia to the 7-8 September 2017 geomagnetic storm // Space Weather. - 2019. - Vol. 17. - P. 989-1010. - DOI:https://doi.org/10.1029/2018SW002132.

18. Eroshenko E., Belov A., Boteler D., et al. Effects of strong geomagnetic storms on Northern railways in Russia // Advances in Space Research. - 2010. - Vol. 46, no. 9. - P. 1102-1110. - DOI:https://doi.org/10.1016/j.asr.2010.05.017.

19. Garmabaki A., Marklund S., Thaduri A., et al. Underground pipelines and railway infrastructure - failure consequences and restrictions // Structure and Infrastructure Engineering. - 2019. - Vol. 16, no. 3. - P. 412-430. - DOI:https://doi.org/10.1080/15732479.2019.1666885.

20. Gaunt C. Why space weather is relevant to electrical power systems // Space Weather. - 2016. - Vol. 14, no. 1. - P. 2-9. - DOI:https://doi.org/10.1002/2015SW001306.

21. Goodman J. Space Weather & Telecommunications. - Springer New York, 2005. - P. 382. - DOI:https://doi.org/10.1007/b102193.

22. Gusev Y., Lkhamdondog A., Monakov Y., et al. Evaluating the Effect of Geoinduced Currents on the Startup Modes of Power Transformers // Power Technology and Engineering. - 2020. - Vol. 54, no. 2. - P. 285-290. - DOI:https://doi.org/10.1007/s10749-020-01202-1.

23. Huang w., Aa E., Shen H., et al. Statistical study of GNSS L-band solar radio bursts // GPS Solutions. - 2018. - Vol. 22, no. 4. - P. 114. - DOI:https://doi.org/10.1007/s10291-018-0780-4.

24. Kappenman J. G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms // Space Weather. - 2005. - Vol. 3, no. 8. - S08C01. - DOI:https://doi.org/10.1029/2004SW000128.

25. Kasinsky V. V., Ptitsyna N. G., Lyakhov N. N., et al. Influence of geomagnetic disturbances on the operation of railway automation and telemechanics // Geomagnetism and Aeronomy. - 2007. - Vol. 47, no. 5. - P. 714-718.

26. Kintner P., Ledvina B., Paula E. de. GPS and ionospheric scintillations // Space Weather. - 2007. - Vol. 5, no. 9. - P. 23. - DOI:https://doi.org/10.1029/2006SW000260.

27. Knipp D., Fraser B., Shea M., et al. On the little-known consequences of the 4 August 1972 ultra-fast coronal mass ejecta: Facts, commentary, and call to action // Space Weather. - 2018. - Vol. 16, no. 11. - P. 1635-1643. - DOI:https://doi.org/10.1029/2018SW002024.

28. Kostrominov A. M., Lozhkin R. O. Influence of geoinduced currents on choke-transformers of rail circuits of railway automation // News of St. Petersburg University of Railways and Communications. - 2021. - Vol. 18, no. 2. - P. 222-228. - DOI:https://doi.org/10.20295/1815-588X-2021-2-222-228.

29. Kozelov B. V., Chernous S. A., Shagimuratov I. I., et al. Solar geophysical factors that could have caused errors in GPS operation during the NATO military exercise "Trident Juncture" from 25/10/2018 to 7/11/2018 // Proceedings of the XLII Annual Seminar «Physics of Auroral Phenomena». Vol. 42. - Apatity : Kola Science Center of the Russian Academy of Sciences, 2019. - P. 48-52. - DOI:https://doi.org/10.25702/KSC.2588-0039.2019.42.48-52.

30. Kozyreva O., Pilipenko V., Sokolova E., et al. Geomagnetic and telluric field variability as a driver of geomagnetically induced currents // Springer Proceedings in Earth and Environmental Sciences. - Springer International Publishing, 2019b. - P. 297-307. - DOI:https://doi.org/10.1007/978-3-030-21788-4_26.

31. Kozyreva O., Pilipenko V., Krasnoperov R., et al. Fine structure of substorm and geomagnetically induced currents // Annals of Geophysics. - 2019a. - Vol. 62. - P. 21. - DOI:https://doi.org/10.4401/ag-8198.

32. Kozyreva O. V., Pilipenko V. A., Dobrovolsky M. N., et al. Database of geomagnetic observations in the Russian Arctic and its use to assess the impact of space weather on technological systems // Solar-terrestrial physics. - 2022. - Vol. 8, no. 1. - P. 39-50. - DOI:https://doi.org/10.12737/szf-81202205.

33. Krausmann E., Andersson E., Russell T., et al. Space weather and rail: findings and outlook. - Luxembourg : Publications Office of the European Union, 2015. - P. 29. - DOI:https://doi.org/10.2788/211456.

34. Liu L., Ge X., Zong W., et al. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway // Space Weather. - 2016. - Vol. 14, no. 10. - P. 754-763. - DOI:https://doi.org/10.1002/2016SW001411.

35. Love J., Hayakawa H., Cliver E. Intensity and impact of the New York railroad superstorm of May 1921 // Space Weather. - 2019. - Vol. 17, no. 8. - P. 1281-1292. - DOI:https://doi.org/10.1029/2019SW002250.

36. Molinski T. Why utilities respect geomagnetically induced currents // Journal of Atmospheric and Solar-Terrestrial Physics. - 2002. - Vol. 64, no. 16. - P. 1765-1778. - DOI:https://doi.org/10.1016/S1364-6826(02)00126-8.

37. Newell P., Liou K., Zhang Y., et al. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. - 2014. - Vol. 12, no. 6. - P. 368-379. - DOI:https://doi.org/10.1002/2014sw001056.

38. Niska S., Schunnesson H., Kumar U. Measurements and analysis of electromagnetic interference in a railway signal box-a case study // International Journal of Reliability, Quality and Safety Engineering. - 2011. - Vol. 18, no. 03. - P. 285-303. - DOI:https://doi.org/10.1142/S0218539311004147.

39. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways. - Springer Berlin, Heidelberg, 2013. - P. 528. - DOI:https://doi.org/10.1007/978-3-642-30281-7.

40. Oughton E., Skelton A., Horne R., et al. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure // Space Weather. - 2017. - Vol. 15, no. 1. - P. 65-83. - DOI:https://doi.org/10.1002/2016SW001491.

41. Patterson C., Wild J., Boteler D. Modeling the Impact of Geomagnetically Induced Currents on Electrified Railway Signaling Systems in the United Kingdom // Space Weather. - 2023. - Vol. 21, no. 3. - e2022SW003385. - DOI:https://doi.org/10.1029/2022SW003385.

42. Pilipenko A. V. The impact of space weather on terrestrial technological systems // Solar-terrestrial physics. - 2021. - Vol. 7, no. 3. - P. 72-110. - DOI:https://doi.org/10.12737/szf-73202106.

43. Pilipenko V. A., Bravo M., Romanova N. V., et al. Geomagnetic and ionospheric responses to the interplanetary shock on March 17, 2015 // Physics of the Earth. - 2018. - No. 5. - P. 61-80. - DOI:https://doi.org/10.1134/S0002333718050125.

44. Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems // Surveys in Geophysics. - 2002. - Vol. 23. - P. 71-90. - DOI:https://doi.org/10.1023/A:1014816009303.

45. Ptitsyna N. G., Tyasto M. I., Kasinsky V. V., et al. Influence of space weather on technical systems: failures of railway equipment during geomagnetic storms // Solar-terrestrial physics. - 2008a. - Vol. 12-2 (12-5). - 360.

46. Ptitsyna N. G., Villoresi D., Dorman L. I., et al. Natural and technogenic low-frequency magnetic fields as factors potentially hazardous to health // Progress in physical sciences. - 1998. - Vol. 168, no. 7. - P. 789-791.

47. Ptitsyna N., Kasinskii V., Villoresi G., et al. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway // Advances in Space Research. - 2008b. - Vol. 42, no. 9. - P. 1510-1514. - DOI:https://doi.org/10.1016/j.asr.2007.10.015.

48. Ptitsyna N., Tyasto M., Kassinskii V., et al. Do natural magnetic fields disturb railway telemetry? // 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. - St. Petersburg, Russia : IEEE, 2007. - 288-290. - DOI:https://doi.org/10.1109/EMCECO.2007.4371713.

49. Pulkkinen A., Bernabeu E., Thomson A., et al. Geomagnetically induced currents: Science, engineering, and applications readiness // Space Weather. - 2017. - Vol. 15, no. 7. - P. 828-856. - DOI:https://doi.org/10.1002/2016SW001501.

50. Qian X., Tian H., Yin Y. Geomagnetic storms’ influence on intercity railway track circuit // Urban Rail Transit. - 2016. - Vol. 2, no. 2. - P. 85-91. - DOI:https://doi.org/10.1007/s40864-016-0040-2.

51. Sakharov I. A., Katkalov Y. V., Selivanov V. N., et al. Registration of geoinduced currents in the regional power system // Practical aspects of heliogeophysics: tr. 11th year. conf. «Plasma physics in the solar system». - Moscow : Space Research Institute of the Russian Academy of Sciences, 2016. - P. 134-145.

52. Sakharov I. A., Kudryashova N. V., Danilin A. N., et al. The impact of geomagnetic disturbances on the operation of railway automation // Bulletin of MIIT. - 2009. - Vol. 21. - P. 107-111.

53. Sakharov Ya. A., Kudryashova N., Danilin A., et al. Geomagnetic disturbances and railway automatic failures // 8th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. - St-Petersburg, Russia : IEEE, 2009. - P. 235-236.

54. Sato H., Jakowski N., Berdermann J., et al. Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies // Space Weather. - 2019. - Vol. 17, no. 6. - P. 816-826. - DOI:https://doi.org/10.1029/2019SW002198.

55. Thaduri A., Galar D., Kumar U. Space weather climate impacts on railway infrastructure // International Journal of System Assurance Engineering and Management. - 2020. - Vol. 11, S2. - P. 267-281. - DOI:https://doi.org/10.1007/s13198-020-01003-9.

56. Trishchenko L. D. Geomagnetic disturbances and power supply and wire communication systems // «Plasma heliophysics». Vol. 2. - Moscow : Fizmatlit, 2008. - P. 213-219.

57. Troshichev O. A., Sormakov A. D. Space weather monitoring based on ground-based magnetic measurements // Meteorology and Hydrology. - 2021. - Vol. 3. - P. 12-27. - DOI:https://doi.org/10.52002/0130-2906-2021-3-12-27.

58. Tsubouchi K., Omura Y. Long-term occurrence probabilities of intense geomagnetic storm events // Space Weather. - 2007. - Vol. 5, no. 12. - P. 1-12. - DOI:https://doi.org/10.1029/2007SW000329.

59. Vakhnina V. V. Modeling of operation modes of power transformers of power supply systems during geomagnetic storms. - Togliatti State University, 2012. - P. 103.

60. Vakhnina V. V., Kuvshinov A. A., Shapovalov V. A., et al. Mechanisms of the impact of quasi-permanent geoinduced currents on electrical networks. - Moscow : Infra-Engineering, 2018. - P. 256.

61. Viljanen A., Pulkkinen A., Pirjola R., et al. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system // Space Weather. - 2006. - Vol. 4, no. 10. - S10004. - DOI:https://doi.org/10.1029/2006SW000234.

62. Vorobev A., Pilipenko V., Krasnoperov R., et al. Short-term forecast of the auroral oval position on the basis of the «virtual globe» technology // Russian Journal of Earth Sciences. - 2020. - Vol. 20, no. 6. - P. 1-9. - DOI:https://doi.org/10.2205/2020ES000721.

63. Warnant R., Lejeune S., Bavier M. Space weather influence on satellite-based navigation and precise positioning // Space Weather. Astrophysics and Space Science Library. Vol. 344 / ed. by J. Lilensten. - Dordrechtr : Springer, 2007. - P. 129-146. - DOI:https://doi.org/10.1007/1-4020-5446-7_14.

64. Wik M., Pirjola R., Lundstedt H., et al. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems // Annales Geophysicaer. - 2009. - Vol. 27, no. 4. - P. 1775-1787. - DOI:https://doi.org/10.5194/angeo-27-1775-2009.

65. Yasyukevich Y., Vasilyev R., Ratovsky K. Small-scale ionospheric irregularities of auroral origin at mid-latitudes during the 22 June 2015 magnetic storm and their effect on GPS positioning // Remote Sensingr. - 2020. - Vol. 12, no. 10. - P. 1579. - DOI:https://doi.org/10.3390/rs12101579.

66. Yasyukevich Y. V., Yasyukevich A., Astafyeva E. How modernized and strengthened GPS signals enhance the system performance during solar radio bursts // GPS Solutions. - 2021. - Vol. 25, no. 2. - P. 12. - DOI:https://doi.org/10.1007/s10291-021-01091-5.

67. Zakharov V. I., Chernyshov A. A., Milokh V., et al. Influence of the ionosphere on the parameters of GPS navigation signals during a geomagnetic substorm // Geomagnetism and Aeronomy. - 2020. - Vol. 60, no. 6. - P. 769-782. - DOI:https://doi.org/10.31857/S0016794020060152.

68. Zhang J., Wang C., Sun T., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation // Space Weather. - 2015. - Vol. 13, no. 10. - P. 643-655. - DOI:https://doi.org/10.1002/2015sw001263.

Войти или Создать
* Забыли пароль?