Origin of Gravity Lows South of the 85∘E Ridge (Central Basin of the Indian Ocean)
Abstract and keywords
Abstract (English):
The 85∘E Ridge associated by the free-air gravity low into a meridional orientation. However, there are two gravity lows south between of 4∘N and 3∘S the nature of which remains a subject of discussion. This article presents the results of density and magnetic modeling based on the data of the expedition SO258/2 with RV Sonne. An analysis of the modeling results with seismic data showed that the nature of gravity lows is associated with the process of serpentinization, and these lows are not a continuation of the 85∘E Ridge.

Keywords:
The Indian Ocean, The 85∘E Ridge, density modeling, magnetic modeling
Text
Publication text (PDF): Read Download
References

1. Alken P., bault E. T., Beggan C. D., et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — DOI:https://doi.org/10.1186/s40623-020-01288-x.

2. Altenbernd T., Jokat W., Geissler W. The bent prolongation of the 85∘E Ridge south of 5∘N - Fact or fiction? // Tectonophysics. — 2020. — Vol. 785. — P. 228457. — DOI:https://doi.org/10.1016/j.tecto.2020.228457.

3. Bull J. M., Scrutton R. A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere // Nature. — 1990. — Vol. 344, no. 6269. — P. 855–858. — DOI:https://doi.org/10.1038/344855a0.

4. Bull J. M., Scrutton R. A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance // Journal of the Geological Society. — 1992. — Vol. 149, no. 6. — P. 955–966. — DOI:https://doi.org/10.1144/gsjgs.149.6.0955.

5. Bulychev A. A., Gilod D. A., Krivosheya K. V. Construction of a three-dimensional density model of the oceanic lithosphere using the geoid height field // Moscow University Bulletin. Series 4. Geology. — 2002. — No. 2. — P. 40–47.

6. Bulychev A. A., Zaitsev A. N. Program for interactive two-dimensional selection of a density medium based on an anomalous gravitational field Certificate of state registration of a computer program. No. 2008611947. Issued 04/18/2008. — 2008.

7. Chamot-Rooke N., Jestin F., Voogd B. de. Intraplate shortening in the central Indian Ocean determined from a 2100- km-long north-south deep seismic reflection profile // Geology. — 1993. — Vol. 21, no. 11. — P. 1043. — DOI:https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2.

8. Curray J. R., Emmel F. J., Moore D. G., et al. Structure, Tectonics, and Geological History of the Northeastern Indian Ocean // The Ocean Basins and Margins. — Springer US, 1982. — P. 399–450. — DOI:https://doi.org/10.1007/978-1-4615-8038-6_9.

9. Curray J. R., Munasinghe T. Origin of the Rajmahal Traps and the 85∘E Ridge: Preliminary reconstructions of the trace of the Crozet hotspot // Geology. — 1991. — Vol. 19, no. 12. — P. 1237. — DOI:https://doi.org/10.1130/0091-7613(1991)0192.3.CO;2.

10. Delescluse M., Chamot-Rooke N. Serpentinization pulse in the actively deforming Central Indian Basin // Earth and Planetary Science Letters. — 2008. — Vol. 276, no. 1/2. — P. 140–151. — DOI:https://doi.org/10.1016/j.epsl.2008.09.017.

11. Desa M., Ramana M. V., Ramprasad T. Seafloor spreading magnetic anomalies south off Sri Lanka // Marine Geology. — 2006. — Vol. 229, no. 3/4. — P. 227–240. — DOI:https://doi.org/10.1016/j.margeo.2006.03.006.

12. Desa M. A., Ramana M. V. Middle Cretaceous geomagnetic field anomalies in the Eastern Indian Ocean and their implication to the tectonic evolution of the Bay of Bengal // Marine Geology. — 2016. — Vol. 382. — P. 111–121. — DOI:https://doi.org/10.1016/j.margeo.2016.10.002.

13. Desa M. A., Ramana M. V., Ramprasad T., et al. Geophysical signatures over and around the northern segment of the 85∘E Ridge, Mahanadi offshore, Eastern Continental Margin of India: Tectonic implications // Journal of Asian Earth Sciences. — 2013. — Vol. 73. — P. 460–472. — DOI:https://doi.org/10.1016/j.jseaes.2013.05.021.

14. Dubinin E. P. Transform faults of the oceanic lithosphere: geodynamic analysis. — Moscow : MSU, 1987. — P. 179.

15. Dubinin E. P., Ushakov S. A. Oceanic rifting. — Moscow : GEOS, 2001. — P. 293.

16. Geller C. A., Weissel J. K., Anderson R. N. Heat transfer and intraplate deformation in the central Indian Ocean // Journal of Geophysical Research: Solid Earth. — 1983. — Vol. 88, B2. — P. 1018–1032. — DOI:https://doi.org/10.1029/jb088ib02p01018.

17. Geophysical fields and structure of the bottom of oceanic basins / ed. by Y. P. Neprochnov. — Moscow : Nauka, 1990. — P. 220.

18. Gorodnitskiy A. M., Brusilovskiy Y. V., Ivanenko A. N., et al. Hydration of the oceanic lithosphere and the ocean magnetic field // Geophysical research. — 2017. — Vol. 18, no. 4. — P. 32–49. — DOI:https://doi.org/10.21455/gr2017.4-3.

19. Gorodnitskiy A. M., Brusilovsky Y. V. The nature of magnetic anomalies and the structure of the oceanic crust in zones of aseismic ridges and intraplate dislocation // The nature of magnetic anomalies and the structure of the oceanic crust. — Moscow : VNIRO, 1996. — P. 203–241.

20. Intraplate deformation in the Central Indian Ocean Basin / ed. by Y. P. Neprochnov, R. D. Gopal, C. Subramaniyam, et al. — Bangalore : Geological society of India, 1998. — P. 250.

21. Kazmin V. G., Levchenko O. V. Modern deformations of the Indian Ocean lithosphere // Modern tectonic activity of the Earth and seismicity. — Moscow : Nauka, 1987. — P. 159–175.

22. Krishna K. S. Structure and evolution of the Afanasy Nikitin seamount, buried hills and 85∘E Ridge in the northeastern Indian Ocean // Earth and Planetary Science Letters. — 2003. — Vol. 209, no. 3/4. — P. 379–394. — DOI:https://doi.org/10.1016/S0012-821X(03)00081-5.

23. Krishna K. S., Bull J. M., Ishizuka O., et al. Growth of the Afanasy Nikitin seamount and its relationship with the 85∘E Ridge, northeastern Indian Ocean // Journal of Earth System Science. — 2014. — Vol. 123, no. 1. — P. 33–47. — DOI:https://doi.org/10.1007/s12040-013-0392-x.

24. Krishna K. S., Bull J. M., Scrutton R. A. Early (pre-8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean // Geology. — 2009. — Vol. 37, no. 3. — P. 227–230. — DOI:https://doi.org/10.1130/G25265A.1.

25. Krishna K. S., Rao D. G., Neprochnov Y. P. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data // Journal of Earth System Science. — 2002. — Vol. 111, no. 1. — P. 17–28. — DOI:https://doi.org/10.1007/BF02702219.

26. Leger G. T., Louden K. E. Seismic Refraction Measurements in the Central Indian Basin: Evidence for Crustal Thickening Related to Intraplate Deformation // Proceedings of the Ocean Drilling Program, 116 Scientific Results. — Ocean Drilling Program, 1990. — DOI:https://doi.org/10.2973/odp.proc.sr.116.156.1990.

27. Levchenko O. V., Evsyukov Y. D., Milanovskiy V. E. Detailed studies of the morphology of intraplate deformations in the Central Indian Ocean Basin // Oceanology. — 1999. — Vol. 39, no. 1. — P. 121–132.

28. Levchenko O. V., Geissler W. H. Geophysical Investigations in the Eastern Indian Ocean in Cruise SO258/2 of the RV Sonne (Germany) // Oceanology. — 2019. — Vol. 59, no. 3. — P. 467–469. — DOI:https://doi.org/10.1134/S0001437019030123.

29. Levchenko O. V., Matveenkov V. V., Volokitina L. P. A probable mechanism of the formation of hydrocarbon deposits in the intraplate deformation area of the Indian Ocean’s lithosphere // Oceanology. — 2011. — Vol. 51, no. 3. — P. 434–442. — DOI:https://doi.org/10.1134/S0001437011030131.

30. Levchenko O. V., Milanovskiy V. E., Popov A. A. Sediment thickness of the northeastern Indian Ocean // Oceanology. — 1993. — Vol. 33, no. 2. — P. 269–275.

31. Levchenko O. V., Shapovalov S. M. Return of Russian Oceanographers to the Indian Ocean: Multidisciplinary Study during the 42nd Cruise of the Research Vessel Akademik Boris Petrov // Oceanology. — 2019. — Vol. 59, no. 1. — P. 164–166. — DOI:https://doi.org/10.1134/s0001437019010090.

32. Levchenko O. V., Verzhbitskii V. E. Compression Structures of Different Sale and Strike Slip Faults within Intraplate Deformation Zone in the Indian Ocean Lithosphere // Oceanology. — 2002. — Vol. 42, no. 6. — P. 902–913.

33. Liu C., Sandwell D. T., Curray J. R. The negative gravity field over the 85∘E ridge // Journal of Geophysical Research: Solid Earth. — 1982. — Vol. 87, B9. — P. 7673–7686. — DOI:https://doi.org/10.1029/JB087iB09p07673.

34. Lobkovskiy L. I. Geodynamics of spreading zones, subduction zones and two-tier plate tectonics. — Moscow : Nauka, 1988. — P. 230.

35. Louden K. E. Variations in crustal structure related to intraplate deformation: evidence from seismic refraction and gravity profiles in the Central Indian Basin // Geophysical Journal International. — 1995. — Vol. 120, no. 2. — P. 375–392. — DOI:https://doi.org/10.1111/j.1365-246x.1995.tb01826.x.

36. Lukashevich I. P., Pristavakina E. I. Density model of the upper mantle beneath the oceans // Physics of the Solid Earth. — 1984. — No. 2. — P. 103–107.

37. Matveenkov V. V., Brusilovskiy Y. V. Tectonic evolution of the Afanasy Nikitin uplift // Doklady Akademii Nauk. — 1999. — Vol. 364, no. 2. — P. 242–244.

38. Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). — 2017. — DOI:https://doi.org/10.7289/V5H70CVX.

39. Müller R. D., Sdrolias M., Gaina C., et al. Age, spreading rates, and spreading asymmetry of the world’s ocean crust // Geochemistry, Geophysics, Geosystems. — 2008. — Vol. 9, no. 4. — DOI:https://doi.org/10.1029/2007gc001743.

40. Neprochnov Y. P., Levchenko O. V., Kuzmin P. N. Comprehensive geological and geophysical characteristics of ocean basins // Geophysical fields and structure of the bottom of oceanic basins. — Moscow : Nauka, 1990. — P. 191–200.

41. Neprochnov Y. P., Levchenko O. V., Merklin L. R., et al. The structure and tectonics of the intraplate deformation area in the Indian Ocean // Tectonophysics. — 1988. — Vol. 156, no. 1/2. — P. 89–106. — DOI:https://doi.org/10.1016/0040-1951(88)90285-5.

42. Palshin N. A., Ivanenko A. N., Alekseev D. A. Inhomogeneous structure of magnetic layer of the Kuril Island Arc // Geodynamics & Tectonophysics. — 2020. — Vol. 11, no. 3. — P. 583–594. — DOI:https://doi.org/10.5800/GT-2020-11-3-0492.

43. Ramana M. V., Subrahmanyam V., Chaubey A. K., et al. Structure and origin of the 85∘E ridge // Journal of Geophysical Research: Solid Earth. — 1997. — Vol. 102, B8. — P. 17995–18012. — DOI:https://doi.org/10.1029/97JB00624.

44. Sandwell D. T., Müller R. D., Smith W. H. F., et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. — 2014. — Vol. 346, no. 6205. — P. 65–67. — DOI:https://doi.org/10.1126/science.1258213.

45. Smith W. H. F., Sandwell D. T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings // Science. — 1997. — Vol. 277, no. 5334. — P. 1956–1962. — DOI:https://doi.org/10.1126/science.277.5334.1956.

46. Stein C. A., Cloetingh S., Wortel R. Seasat-derived gravity constraints on stress and deformation in the northeastern Indian Ocean // Geophysical Research Letters. — 1989. — Vol. 16, no. 8. — P. 823–826. — DOI:https://doi.org/10.1029/GL016i008p00823.

47. Straume E. O., Gaina C., Medvedev S., et al. GlobSed: Updated Total Sediment Thickness in the World’s Oceans // Geochemistry, Geophysics, Geosystems. — 2019. — Vol. 20, no. 4. — P. 1756–1772. — DOI:https://doi.org/10.1029/2018GC008115.

48. Tiwari V. M., Diament M., Singh S. C. Analysis of satellite gravity and bathymetry data over Ninety-East Ridge: Variation in the compensation mechanism and implication for emplacement process // Journal of Geophysical Research: Solid Earth. — 2003. — Vol. 108, B2. — DOI:https://doi.org/10.1029/2000JB000047.

49. Veklich I. A., Ivanenko A. N., Levchenko O. V. Anomalous magnetic field ∆Ta in the equatorial Indian Ocean (survey at polygons) // Bulletin of Kamchatka Regional Association «Educational-Scientific Center». Earth Sciences. — 2020. — Vol. 45, no. 1. — P. 17–37. — DOI:https://doi.org/10.31431/1816-5524-2020-1-45-17-37.

50. Verzhbitskii E. V., Levchenko O. V. Detailed structure of intraplate deformations zone in the Central Indian Ocean Basin (as deduced from three continuous profiling sites) // Geotectonics. — 2002. — No. 6. — P. 77–94.

51. Verzhbitskii E. V., Lobkovsky L. I. Anomalous geothermal regime of the Central and Arabian basins of the Indian Ocean // Physics of the Solid Earth. — 1993. — No. 11. — P. 16–26.

52. Wasilewski P. J., Mayhew M. A. The moho as a magnetic boundary revisited // Geophysical Research Letters. — 1992. — Vol. 19, no. 22. — P. 2259–2262. — DOI:https://doi.org/10.1029/92GL01997.

53. Weissel J. K., Anderson R. N., Geller C. A. Deformation of the Indo-Australian plate // Nature. — 1980. — Vol. 287, no. 5780. — P. 284–291. — DOI:https://doi.org/10.1038/287284a0.

54. Williams C. F. Hydrothermal Circulation and Intraplate Deformation: Constraints and Predictions from In-Situ Measurements and Mathematical Models. — Ocean Drilling Program, 1990. — DOI:https://doi.org/10.2973/odp.proc.sr.116.139.1990.

Login or Create
* Forgot password?