Analytical Model of Small Fluctuations of Compressible Magma With Maxwell Rheology in the Feeding System of a Volcano. Part 2. Oscillations of Vertical Velocity
Abstract and keywords
Abstract (English):
The analytical solution for vertical magma movements in a volcanic conduit within the occurrence of low-frequency volcanic seismic events is presented. Magma is described by Maxwell's compressible body model. When the density of the magmatic melt is disturbed, for example, when dense magma enters from deep layers or the melt degasses at a certain depth, density oscillations may occur in the channel as a reaction to this event. For the magma conduit of the simplest cylindrical shape, the magma density and two components of the velocity of movement are subject to oscillations. In this case, the vertical component of the velocity experiences forced oscillations, both under the influence of density oscillations and under the influence of the initiating disturbance. All these oscillations are harmonic damped oscillations, the damping coefficient of which is determined by the relaxation time of the magmatic melt, and the natural frequency depends on the physical characteristics of the magmatic melt and the geometric dimensions of the conduit. Melt density oscillations lead to periodic variations in the lithostatic pressure drop, which in turn causes vertical movements of the melt, the most amplitude along the axis of the magma conduit. The model is used to describe crater surface displacements observed on the surface of the Santiaguito volcano crater.

Keywords:
Volcanic low-frequency earthquakes, volcano feeding system, Maxwell rheology, compressible magmatic body, analytical model
Text
Publication text (PDF): Read Download
References

1. Anfilogov V. N., Bykov V. N., Osipov A. A. Silicate melts. — Moscow : Nauka, 2005. — P. 357.

2. Barmin A., Melnik O., Skulskiy O. Model of a non-isothermal stationary magma flow in a volcanic conduit taking into account slip boundary conditions at the conduit wall // Computational Continuum Mechanics. — 2012. — Vol. 5, no. 2. — P. 354–358. — DOI:https://doi.org/10.7242/1999-6691/2012.5.3.42.

3. Chouet B. A. Long-period volcano seismicity: its source and use in eruption forecasting // Nature. — 1996. — Vol. 380, no. 6572. — P. 309–316. — DOI:https://doi.org/10.1038/380309a0.

4. Crosson R. S., Bame D. A. A spherical source model for low frequency volcanic earthquakes // Journal of Geophysical Research: Solid Earth. — 1985. — Vol. 90, B12. — P. 10237–10247. — DOI:https://doi.org/10.1029/JB090iB12p10237.

5. Fujita E., Ida Y., Oikawa J. Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor // Journal of Volcanology and Geothermal Research. — 1995. — Vol. 69, no. 3/4. — P. 365–378. — DOI:https://doi.org/10.1016/0377-0273(95)00027-5.

6. Girona T., Caudron C., Huber C. Origin of Shallow Volcanic Tremor: The Dynamics of Gas Pockets Trapped Beneath Thin Permeable Media // Journal of Geophysical Research: Solid Earth. — 2019. — Vol. 124, no. 5. — P. 4831–4861. — DOI:https://doi.org/10.1029/2019JB017482.

7. Gonnermann H. M., Manga M. The Fluid Mechanics Inside a Volcano // Annual Review of Fluid Mechanics. — 2007. — Vol. 39, no. 1. — P. 321–356. — DOI:https://doi.org/10.1146/annurev.fluid.39.050905.110207.

8. Gottschämmer E., Rohnacher A., Carter W., et al. Volcanic emission and seismic tremor at Santiaguito, Guatemala: New insights from long-term seismic, infrasound and thermal measurements in 2018-2020 // Journal of Volcanology and Geothermal Research. — 2021. — Vol. 411. — P. 107154. — DOI:https://doi.org/10.1016/j.jvolgeores.2020.107154.

9. Iverson R. M., Dzurisin D., Gardner C. A., et al. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05 // Nature. — 2006. — Vol. 444, no. 7118. — P. 439–443. — DOI:https://doi.org/10.1038/nature05322.

10. Johnson J. B., Lees J. M., Gerst A., et al. Long-period earthquakes and co-eruptive dome inflation seen with particle image velocimetry // Nature. — 2008. — Vol. 456, no. 7220. — P. 377–381. — DOI:https://doi.org/10.1038/nature07429.

11. Johnson J. B., Lyons J. J., Andrews B. J., et al. Explosive dome eruptions modulated by periodic gas-driven inflation // Geophysical Research Letters. — 2014. — Vol. 41, no. 19. — P. 6689–6697. — DOI:https://doi.org/10.1002/2014GL061310.

12. Kumagai H., Chouet B. A. The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes // Geophysical Journal International. — 1999. — Vol. 138, no. 2. — F7–F12. — DOI:https://doi.org/10.1046/j.1365-246X.1999.00911.x.

13. Kumagai H., Chouet B. A. The dependence of acoustic properties of a crack on the resonance mode and geometry // Geophysical Research Letters. — 2001. — Vol. 28, no. 17. — P. 3325–3328. — DOI:https://doi.org/10.1029/2001GL013025.

14. Kurzon I., Lyakhovsky V., Lensky N. G., et al. Forcing of seismic waves travelling through a bubbly magma // AGU Fall Meeting Abstracts. Vol. 2005. — New York : AGU, 2005.

15. Kurzon I., Lyakhovsky V., Navon O., et al. Pressure waves in a supersaturated bubbly magma: Pressure waves and bubbly magma // Geophysical Journal International. — 2011. — Vol. 187, no. 1. — P. 421–438. — DOI:https://doi.org/10.1111/j.1365-246X.2011.05152.x.

16. Lamb O. D., Lamur A., Díaz-Moreno A., et al. Disruption of Long-Term Effusive-Explosive Activity at Santiaguito, Guatemala // Frontiers in Earth Science. — 2019. — Vol. 6. — DOI:https://doi.org/10.3389/feart.2018.00253.

17. Lebedev E. B., Khitarov N. I. Physical properties of magmatic melts. — Moscow : Nauka, 1979. — P. 200.

18. Neuberg J. W., Tuffen H., Collier L., et al. The trigger mechanism of low-frequency earthquakes on Montserrat // Journal of Volcanology and Geothermal Research. — 2006. — Vol. 153, no. 1/2. — P. 37–50. — DOI:https://doi.org/10.1016/j.jvolgeores.2005.08.008.

19. Nishimura T., Hamaguchi H., Ueki S. Source mechanisms of volcanic tremor and low-frequency earthquakes associated with the 1988-89 eruptive activity of Mt Tokachi, Hokkaido, Japan // Geophysical Journal International. — 1995. — Vol. 121, no. 2. — P. 444–458. — DOI:https://doi.org/10.1111/j.1365-246X.1995.tb05725.x.

20. Ohmi S., Obara K. Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake // Geophysical Research Letters. — 2002. — Vol. 29, no. 16. — DOI:https://doi.org/10.1029/2001GL014469.

21. Ozerov A., Ispolatov I., Lees J. Modeling Strombolian eruptions of Karymsky volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. — 2003. — Vol. 122, no. 3/4. — P. 265–280. — DOI:https://doi.org/10.1016/S0377-0273(02)00506-1.

22. Persikov E. S. Viscosity of magmatic melts. — Moscow : Nauka, 1984. — P. 159.

23. Polyanin A. D. Handbook of linear equations of mathematical physics. — Moscow : Physical, Mathematical Literature, 2001. — P. 576.

24. Radionoff A. A. On Small Oscillations Inside a Volcano Feeding System // University News. North-Caucasian Region. Natural Sciences Series. — 2020. — 1 (205). — P. 78–84. — DOI:https://doi.org/10.18522/1026-2237-2020-1-78-84.

25. Radionoff A. A. Analytical model of small fluctuations of compressible magma with Maxwell rheology in the feeding system of a volcano. Part 1. Density oscillations // Russian Journal of Earth Sciences. — 2023. — Vol. 23. — ES2005. — DOI:https://doi.org/10.2205/2023ES000845.

26. Shakirova A. A., Firstov P. P., Parovik R. I. Phenomenological model of the generation of the seismic mode «Drumbeats» earthquakes accompanying the eruption of Kizimen volcano in 2011-2012 // Vestnik KRAUNC. Fiz.-mat. nauki. — 2020. — Vol. 33, no. 4. — P. 86–101. — DOI:https://doi.org/10.26117/2079-6641-2020-33-4-86-101.

27. Utkin I. S., Melnik O. E. Dynamics of explosive degassing of a volcano // Proceedings of the Mathematical Institute V. A. Steklova. — 2018. — Vol. 300, no. 01. — P. 190–196. — DOI:https://doi.org/10.1134/s0371968518010156.

Login or Create
* Forgot password?