from 01.01.2009 until now
UDK 622 Горное дело
UDK 550.834 Использование упругих волн для изучения верхней части разреза. Сейсмический и акустический методы поисков, разведки и зондирования
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Using the example of the Tyubegatan potash deposit (Uzbekistan), a complex of geophysical and geomechanical safety assurance for mining operations in conditions of the complex tectonic structure of the undermined rock mass is considered. Geophysical research included ground-based seismic surveys using a profile system in combination with «light» standard electro- and gravimetric techniques. Based on the results of these works, a physical and geological model of the deposit areas was built with the weakened zones and faults localization. As part of the meaningful interpretation, the physical and geological model was transformed into a geomechanical calculation scheme, which reflected the main mining-geological and mining-technical condition of development and was based on a model of elastoplastic deformation of salt rocks. The geomechanical model was calibrated from radar interferometric surveys. The time factor was taken into account in accordance with the developed modification of the well-known method of variable deformation modules. The formation of plasticity zones in physical terms was identified with the formation of fracturing areas in the water protection layer, which determine the danger of violating its continuity. Numerical implementation of the geomechanical model using the finite element method made it possible to substantiate the optimal parameters of the chamber development system, ensuring the safety of the water protection layer, including fault zones.
potash deposit, water protection layer, tectonic, fault, geophysical research, geomechanical, mathematical modeling, numerical implementation.
1. Baryakh A., Tsayukov A. Justification of fracture criteria for salt rocks // Frattura ed Integrità Strutturale. - 2022. - Vol. 16, no. 62. - P. 585-601. - DOI:https://doi.org/10.3221/IGF-ESIS.62.40.; DOI: https://doi.org/10.25018/0236-1493-2019-09-0-5-29; EDN: https://elibrary.ru/SQSOIC
2. Baryakh A. A., Evseev A. V. Closure of potash and salt mines: Review and analysis of the problem // Mining Informational and analytical bulletin. - 2019. - Vol. 9. - P. 5-29. - DOI:https://doi.org/10.25018/0236-1493-2019-09-0-5-29.; EDN: https://elibrary.ru/PYWAJJ
3. Baryakh A. A., Krasnoshtein A. E., Sanfirov I. A. Mining accidents: flooding of the First Bereznikovsky potash mine // Bulletin of the Perm Scientific Center. - 2009. - No. 2. - P. 4-9. - EDN: https://elibrary.ru/PYWAJJ.; EDN: https://elibrary.ru/PFHADT
4. Baryakh A. A., Samodelkina N. A. Rheological analysis of geomechanical processes // Journal of Mining Science. - 2005. - No. 6. - P. 32-41. - EDN: https://elibrary.ru/PFHADT.; DOI: https://doi.org/10.15372/FTPRPI20170602; EDN: https://elibrary.ru/YKXOQU
5. Baryakh A. A., Sanfirov I. A., Fedoseev A. K., et al. Seismic-Geomechanical Prediction of Water-Impervious Strata State in Potassium Mines // Journal of Mining Science. - 2017. - No. 6. - P. 10-22. - DOI:https://doi.org/10.15372/FTPRPI20170602.; DOI: https://doi.org/10.25018/0236_1493_2022_62_0_33; EDN: https://elibrary.ru/VABFUY
6. Belyakov N. A., Belikov A. A. Prediction of the integrity of the water-protective stratum at the Verkhnekamskoye potash ore deposit // Mining informational and analytical bulletin. - 2022. - No. 6-2. - P. 33-46. - DOI:https://doi.org/10.25018/0236_1493_2022_62_0_33.; EDN: https://elibrary.ru/NCGHRJ
7. Bolgarov A. G., Roslov Y. V. Inter-well seismic tomography for solving engineering-geological problems // Seismic technologies. - 2009. - No. 1. - P. 105-111. - EDN: https://elibrary.ru/NCGHRJ.; EDN: https://elibrary.ru/IFAPOR
8. Borst R. de, Crisfield M. A., Remmers J. J. C., et al. Non-Linear Finite Element Analysis of Solids and Structures. - Wiley, 2012. - DOI:https://doi.org/10.1002/9781118375938.; DOI: https://doi.org/10.25635/2313-1586.2023.03.118; EDN: https://elibrary.ru/IYXZUB
9. de Souza Neto E. A., Perić D., Owen D. R. J. Computational Methods for Plasticity: Theory and Applications. - Wiley, 2008. - DOI:https://doi.org/10.1002/9780470694626.; EDN: https://elibrary.ru/POEHWH
10. Gendzwill D. J., Brehm R. High-resolution seismic reflections in a potash mine // GEOPHYSICS. - 1993. - Vol. 58, no. 5. - P. 741-748. - DOI:https://doi.org/10.1190/1.1443459.; EDN: https://elibrary.ru/LVFAKN
11. Gendzwill D. J., Stead D. Rock mass characterization around Saskatchewan potash mine openings using geophysical techniques: a review // Canadian Geotechnical Journal. - 1992. - Vol. 29, no. 4. - P. 666-674. - DOI:https://doi.org/10.1139/t92-073.; DOI: https://doi.org/10.30686/1609-9192-2023-1-89-94; EDN: https://elibrary.ru/BZEHXL
12. Glebov S. V. Geophysical support for the development of the Verkhnekamskoye salt deposit // Mining informational and analytical bulletin. - 2004. - No. 9. - P. 89-92. - EDN: https://elibrary.ru/IFAPOR.; EDN: https://elibrary.ru/RRUGXL
13. Halabura (Steve) S. P., Hardy M. P. An overview of the geology of solution mining of potash in Saskatchewan // Fall 2007 Conference 8-9 October 2007. - Halifax, Nova Scotia, Canada : Solution Mining Research Institute, 2007.; DOI: https://doi.org/10.3221/IGF-ESIS.62.40; EDN: https://elibrary.ru/CYOLFI
14. Karasev M. A., Protosenya A. G., Katerov A. M., et al. Analysis of shaft lining stress state in anhydrite-rock salt transition zone // Rudarsko-geološko-naftni zbornik. - 2022. - Vol. 37, no. 1. - P. 151-162. - DOI:https://doi.org/10.17794/rgn.2022.1.13.
15. Nolet G. A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun. - Cambridge University Press, 2008. - DOI:https://doi.org/10.1017/CBO9780511984709.
16. Pozdeev A. A., Zemskov A. N., Ibragimov G. I. Some aspects of the development of the Tyubegatan potassium salt deposit // Mine of the Future. - 2010. - No. 1. - P. 6-10. - EDN: https://elibrary.ru/POEHWH.
17. Prugger F. F., Prugger A. F. Water problems in Saskatchewan potash mining - what can be learned from them? // CIM Bulletin. - 1991. - Vol. 84, no. 945. - P. 58-66.
18. Pumjan S., Long T. T., Loc H. H., et al. Deep well injection for the waste brine disposal solution of potash mining in Northeastern Thailand // Journal of Environmental Management. - 2022. - Vol. 311. - P. 114821. - DOI:https://doi.org/10.1016/j.jenvman.2022.114821.
19. Rauche H. Die Kaliindustrie im 21. Jahrhundert. - Springer Berlin Heidelberg, 2015. - DOI:https://doi.org/10.1007/978-3-662-46834-0.; DOI: https://doi.org/10.17794/rgn.2022.1.13; EDN: https://elibrary.ru/GAGUWC
20. Rudkovsky R. R., Trofimov V. L., Khaziev F. F. Errant brines in salt sections and actions to take to study the brines // Exploration and protection of subsoil. - 2011. - No. 1. - P. 63-72. - EDN: https://elibrary.ru/LVFAKN.
21. Rylnikova M. V., Esina E. N., Sakharov E. M., et al. Regularities in geodynamic phenomena in mining deep-lying potassium-magnesium salt deposits with complex structure // Mining Industry Journal. - 2023. - No. 1. - P. 89-94. - DOI:https://doi.org/10.30686/1609-9192-2023-1-89-94.
22. Sanfirov I. A., Stepanov Y. I., Fatkin K. B., et al. Shallow geophysical exploration of the upper Kama potash salt deposit // Journal of Mining Science. - 2013. - No. 6. - P. 71-77. - EDN: https://elibrary.ru/RRUGXL.; DOI: https://doi.org/10.1016/j.jenvman.2022.114821; EDN: https://elibrary.ru/SDEFPE
23. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014 / ed. by R. Ulusay. - Springer International Publishing, 2015. - DOI:https://doi.org/10.1007/978-3-319-07713-0.
24. Wang D.-J., Tang H., Shen P., et al. A Parabolic Failure Criterion for Transversely Isotropic Rock: Modification and Verification // Mathematical Problems in Engineering. - 2019. - Vol. 2019. - P. 1-12. - DOI:https://doi.org/10.1155/2019/8052560.
25. Yilmaz Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Volume I, II. - Society of Exploration Geophysicists, 2008. - 2027 p.
26. You M. Comparison of the accuracy of some conventional triaxial strength criteria for intact rock // International Journal of Rock Mechanics and Mining Sciences. - 2011. - Vol. 48, no. 5. - P. 852-863. - DOI:https://doi.org/10.1016/j.ijrmms.2011.05.006.
27. Zhikin A. A., Sanfirov I. A., Fatkin K. B. Classification of wave patterns of typical geological heterogeneities of the salt strata of the Verkhnekamskoye deposit of potassium and magnesium salts // Problems of Subsoil Use. - 2023. - Vol. 3, no. 38. - P. 118-128. - DOI:https://doi.org/10.25635/2313-1586.2023.03.118.; DOI: https://doi.org/10.1016/j.ijrmms.2011.05.006; EDN: https://elibrary.ru/ONBSKD
28. Zienkiewicz O. C., Taylor R. L., Fox D. The Finite Element Method for Solid and Structural Mechanics. - Severn. - Elsevier, 2014. - 624 p. - DOI:https://doi.org/10.1016/C2009-0-26332-X.