High Resolution Seismicity Smoothing Method for Seismic Hazard Assessment
Abstract and keywords
Abstract (English):
A high resolution smoothing method is proposed for performing local estimates of the parameters of the Gutenberg-Richter law (GR). Using this method, the smoothing radius can be chosen large enough to ensure that the condition of applicability of GR law is met, while the distinguished areas of high activity align well with the distribution of epicenters and there is no “smearing” of narrow areas of really high seismic activity into wider zones, which are not actually active at the edges.

Keywords:
seismicity, seismic hazard, smoothing method, Gutenberg-Richter law, interpolation
Text
Text (PDF): Read Download
References

1. Aki, K. (1965), Maximum likelihood estimate of b in the formula logN = a − bM and its confidence level, Bulletin of the Earthquake Research Institute, 43, 237-239.

2. Akinci, A., M. P. Moschetti, and M. Taroni (2018), Ensemble Smoothed Seismicity Models for the New Italian Probabilistic Seismic Hazard Map, Seismological Research Letters, 89(4), 1277-1287, https://doi.org/10.1785/0220180040.

3. Bender, B. (1983), Maximum likelihood estimation of b values for magnitude grouped data, Bulletin of the Seismological Society of America, 73(3), 831-851, https://doi.org/10.1785/BSSA0730030831.

4. Briggs, I. C. (1974), Machine contouring using minimum curvature, GEOPHYSICS, 39(1), 39-48, https://doi.org/10.1190/1.1440410.

5. Cornell, C. A. (1968), Engineering seismic risk analysis, Bulletin of the Seismological Society of America, 58(5), 1583-1606, https://doi.org/10.1785/BSSA0580051583.

6. Frankel, A. (1995), Mapping Seismic Hazard in the Central and Eastern United States, Seismological Research Letters, 66(4), 8-21, https://doi.org/10.1785/gssrl.66.4.8.

7. Giardini, D., G. Grünthal, K. M. Shedlock, and P. Zhang (1999), The GSHAP Global Seismic Hazard Map, Annals of Geophysics, 42(6), https://doi.org/10.4401/ag-3784.

8. Grain, I. K. (1970), Computer interpolation and contouring of two-dimensional data: A review, Geoexploration, 8(2), 71-86, https://doi.org/10.1016/0016-7142(70)90021-9.

9. Gutenberg, B., and C. F. Richter (1945), Frequency of earthquakes in California, Nature, 156(3960), 371-371, https://doi.org/10.1038/156371a0.

10. Gvishiani, A. D., I. A. Vorobieva, P. N. Shebalin, B. A. Dzeboev, B. V. Dzeranov, and A. A. Skorkina (2022), Integrated Earthquake Catalog of the Eastern Sector of the Russian Arctic, Applied Sciences, 12(10), 5010, https://doi.org/10.3390/app12105010.; ; EDN: https://elibrary.ru/UUYOCP

11. Helmstetter, A., and M. J. Werner (2012), Adaptive Spatiotemporal Smoothing of Seismicity for Long-Term Earthquake Forecasts in California, Bulletin of the Seismological Society of America, 102(6), 2518-2529, https://doi.org/10.1785/0120120062.

12. Kosobokov, V. G., and S. A. Mazhkenov (1992), On Similarity in the Spatial Distribution of Seismicity, in Computational Seismology and Geodynamics, pp. 6-15, American Geophysical Union, https://doi.org/10.1029/CS001p0006.

13. Main, I. (2000), Apparent Breaks in Scaling in the Earthquake Cumulative Frequency-Magnitude Distribution: Fact or Artifact?, Bulletin of the Seismological Society of America, 90(1), 86-97, https://doi.org/10.1785/0119990086.

14. Medvedev, S., W. Sponheuer, and V. Kárník (1964), Neue seismische Skala Intensity scale of earthquakes, 7. Tagung der Europäischen Seismologischen Kommission vom 24.9. bis 30.9.1962, Institut für Bodendynamik Und Erdbebenforschung in Jena, 77, 69-76.

15. Molchan, G., T. Kronrod, and G. F. Panza (1997), Multi-scale seismicity model for seismic risk, Bulletin of the Seismological Society of America, 87(5), 1220-1229, https://doi.org/10.1785/BSSA0870051220.; EDN: https://elibrary.ru/LEGWHT

16. Petersen, K., S. Vakkalanka, and L. Kuzniarz (2015), Guidelines for conducting systematic mapping studies in software engineering: An update, Information and Software Technology, 64, 1-18, https://doi.org/10.1016/j.infsof.2015.03.007.

17. Pisarenko, V. F., and D. V. Pisarenko (2021), A Modified k-Nearest-Neighbors Method and Its Application to Estimation of Seismic Intensity, Pure and Applied Geophysics, 179(11), 4025-4036, https://doi.org/10.1007/s00024-021-02717-y.; ; EDN: https://elibrary.ru/LVTDYS

18. Riznichenko, Y. V. (1958), On the study of seismic regime, Izv. Academy of Sciences of the USSR. Ser. geophysics, (9), 1057-1074 (in Russian).

19. Riznichenko, Y. V. (1968), Energy model of seismic regime, Izv. Academy of Sciences of the USSR. Ser. geophysics, (5), 3-19 (in Russian).

20. Romanowicz, B. (1992), Strike-slip earthquakes on quasi-vertical transcurrent faults: Inferences for general scaling relations, Geophysical Research Letters, 19(5), 481-484, https://doi.org/10.1029/92GL00265.

21. Sadovsky, M. A. (1979), Natural Lumpiness of Rocks, Reports of Academy of Sciences, 227(4), 829-834 (in Russian).

22. Shebalin, P. N., C. Narteau, and S. V. Baranov (2020), Earthquake productivity law, Geophysical Journal International, 222(2), 1264-1269, https://doi.org/10.1093/gji/ggaa252.; ; EDN: https://elibrary.ru/IHQXAK

23. Shebalin, P. N., A. D. Gvishiani, B. A. Dzeboev, and A. A. Skorkina (2022), Why Are New Approaches to Seismic Hazard Assessment Required?, Doklady Earth Sciences, 507(1), 930-935, https://doi.org/10.1134/s1028334x22700362.; ; EDN: https://elibrary.ru/UOXZRJ

24. Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, GEOPHYSICS, 55(3), 293-305, https://doi.org/10.1190/1.1442837.

25. Stirling, M., G. McVerry, M. Gerstenberger, N. Litchfield, R. V. Dissen, and other (2012), National Seismic Hazard Model for New Zealand: 2010 Update, Bulletin of the Seismological Society of America, 102(4), 1514-1542, https://doi.org/10.1785/0120110170.

26. Stock, C. (2002), Adaptive Kernel Estimation and Continuous Probability Representation of Historical Earthquake Catalogs, Bulletin of the Seismological Society of America, 92(3), 904-912, https://doi.org/10.1785/0120000233.

27. Ulomov, V. I., and The GSHAP Region Working Group (1999), Seismic hazard of Northern Eurasia, Annals of Geophysics, 42(6), 1023-1038, https://doi.org/10.4401/ag-3785.

28. Vorobieva, I., C. Narteau, P. Shebalin, F. Beauducel, A. Nercessian, V. Clouard, and M.-P. Bouin (2013), Multiscale Mapping of Completeness Magnitude of Earthquake Catalogs, Bulletin of the Seismological Society of America, 103(4), 2188-2202, https://doi.org/10.1785/0120120132.; ; EDN: https://elibrary.ru/RFMSRF

29. Vorobieva, I. A., A. D. Gvishiani, B. A. Dzeboev, B. V. Dzeranov, Y. V. Barykina, and A. O. Antipova (2022), Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogs, Frontiers in Earth Science, 10, https://doi.org/10.3389/feart.2022.820277.; ; EDN: https://elibrary.ru/PHORTN

30. Wessel, P., J. F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W. H. F. Smith, and D. Tian (2019), The Generic Mapping Tools Version 6, Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564, https://doi.org/10.1029/2019GC008515.; ; EDN: https://elibrary.ru/JFOOHN

31. Wyss, M., and A. N. V. Kossobokov (2012), Errors in expected human losses due to incorrect seismic hazard estimates, Natural Hazards, 62(3), 927-935, https://doi.org/10.1007/s11069-012-0125-5.; ; EDN: https://elibrary.ru/PDQAWX

32. Zechar, J. D., M. C. Gerstenberger, and D. A. Rhoades (2010), Likelihood-Based Tests for Evaluating Space-Rate-Magnitude Earthquake Forecasts, Bulletin of the Seismological Society of America, 100(3), 1184-1195, https://doi.org/10.1785/0120090192.; ; EDN: https://elibrary.ru/XXGVJL

Login or Create
* Forgot password?