employee
Moscow, Moscow, Russian Federation
employee
Moscow, Moscow, Russian Federation
employee from 01.01.2020 until now
Lomonosov Moscow State University (Faculty of physics, Department of Earth physics, student)
student from 01.01.2018 to 01.01.2023
Moscow, Moscow, Russian Federation
Litvinovo, Moscow, Russian Federation
Moscow, Russian Federation
UDK 550.34 Сейсмология
UDK 55 Геология. Геологические и геофизические науки
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.31 Физика Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.06.01 Науки о Земле
BBK 26 Науки о Земле
TBK 6323 Сейсмология
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
A high resolution smoothing method is proposed for performing local estimates of the parameters of the Gutenberg-Richter law (GR). Using this method, the smoothing radius can be chosen large enough to ensure that the condition of applicability of GR law is met, while the distinguished areas of high activity align well with the distribution of epicenters and there is no “smearing” of narrow areas of really high seismic activity into wider zones, which are not actually active at the edges.
seismicity, seismic hazard, smoothing method, Gutenberg-Richter law, interpolation
1. Aki, K. (1965), Maximum likelihood estimate of b in the formula logN = a − bM and its confidence level, Bulletin of the Earthquake Research Institute, 43, 237-239.
2. Akinci, A., M. P. Moschetti, and M. Taroni (2018), Ensemble Smoothed Seismicity Models for the New Italian Probabilistic Seismic Hazard Map, Seismological Research Letters, 89(4), 1277-1287, https://doi.org/10.1785/0220180040.
3. Bender, B. (1983), Maximum likelihood estimation of b values for magnitude grouped data, Bulletin of the Seismological Society of America, 73(3), 831-851, https://doi.org/10.1785/BSSA0730030831.
4. Briggs, I. C. (1974), Machine contouring using minimum curvature, GEOPHYSICS, 39(1), 39-48, https://doi.org/10.1190/1.1440410.
5. Cornell, C. A. (1968), Engineering seismic risk analysis, Bulletin of the Seismological Society of America, 58(5), 1583-1606, https://doi.org/10.1785/BSSA0580051583.
6. Frankel, A. (1995), Mapping Seismic Hazard in the Central and Eastern United States, Seismological Research Letters, 66(4), 8-21, https://doi.org/10.1785/gssrl.66.4.8.
7. Giardini, D., G. Grünthal, K. M. Shedlock, and P. Zhang (1999), The GSHAP Global Seismic Hazard Map, Annals of Geophysics, 42(6), https://doi.org/10.4401/ag-3784.
8. Grain, I. K. (1970), Computer interpolation and contouring of two-dimensional data: A review, Geoexploration, 8(2), 71-86, https://doi.org/10.1016/0016-7142(70)90021-9.
9. Gutenberg, B., and C. F. Richter (1945), Frequency of earthquakes in California, Nature, 156(3960), 371-371, https://doi.org/10.1038/156371a0.
10. Gvishiani, A. D., I. A. Vorobieva, P. N. Shebalin, B. A. Dzeboev, B. V. Dzeranov, and A. A. Skorkina (2022), Integrated Earthquake Catalog of the Eastern Sector of the Russian Arctic, Applied Sciences, 12(10), 5010, https://doi.org/10.3390/app12105010.
11. Helmstetter, A., and M. J. Werner (2012), Adaptive Spatiotemporal Smoothing of Seismicity for Long-Term Earthquake Forecasts in California, Bulletin of the Seismological Society of America, 102(6), 2518-2529, https://doi.org/10.1785/0120120062.
12. Kosobokov, V. G., and S. A. Mazhkenov (1992), On Similarity in the Spatial Distribution of Seismicity, in Computational Seismology and Geodynamics, pp. 6-15, American Geophysical Union, https://doi.org/10.1029/CS001p0006.
13. Main, I. (2000), Apparent Breaks in Scaling in the Earthquake Cumulative Frequency-Magnitude Distribution: Fact or Artifact?, Bulletin of the Seismological Society of America, 90(1), 86-97, https://doi.org/10.1785/0119990086.
14. Medvedev, S., W. Sponheuer, and V. Kárník (1964), Neue seismische Skala Intensity scale of earthquakes, 7. Tagung der Europäischen Seismologischen Kommission vom 24.9. bis 30.9.1962, Institut für Bodendynamik Und Erdbebenforschung in Jena, 77, 69-76.
15. Molchan, G., T. Kronrod, and G. F. Panza (1997), Multi-scale seismicity model for seismic risk, Bulletin of the Seismological Society of America, 87(5), 1220-1229, https://doi.org/10.1785/BSSA0870051220.
16. Petersen, K., S. Vakkalanka, and L. Kuzniarz (2015), Guidelines for conducting systematic mapping studies in software engineering: An update, Information and Software Technology, 64, 1-18, https://doi.org/10.1016/j.infsof.2015.03.007.
17. Pisarenko, V. F., and D. V. Pisarenko (2021), A Modified k-Nearest-Neighbors Method and Its Application to Estimation of Seismic Intensity, Pure and Applied Geophysics, 179(11), 4025-4036, https://doi.org/10.1007/s00024-021-02717-y.
18. Riznichenko, Y. V. (1958), On the study of seismic regime, Izv. Academy of Sciences of the USSR. Ser. geophysics, (9), 1057-1074 (in Russian).
19. Riznichenko, Y. V. (1968), Energy model of seismic regime, Izv. Academy of Sciences of the USSR. Ser. geophysics, (5), 3-19 (in Russian).
20. Romanowicz, B. (1992), Strike-slip earthquakes on quasi-vertical transcurrent faults: Inferences for general scaling relations, Geophysical Research Letters, 19(5), 481-484, https://doi.org/10.1029/92GL00265.
21. Sadovsky, M. A. (1979), Natural Lumpiness of Rocks, Reports of Academy of Sciences, 227(4), 829-834 (in Russian).
22. Shebalin, P. N., C. Narteau, and S. V. Baranov (2020), Earthquake productivity law, Geophysical Journal International, 222(2), 1264-1269, https://doi.org/10.1093/gji/ggaa252.
23. Shebalin, P. N., A. D. Gvishiani, B. A. Dzeboev, and A. A. Skorkina (2022), Why Are New Approaches to Seismic Hazard Assessment Required?, Doklady Earth Sciences, 507(1), 930-935, https://doi.org/10.1134/s1028334x22700362.
24. Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, GEOPHYSICS, 55(3), 293-305, https://doi.org/10.1190/1.1442837.
25. Stirling, M., G. McVerry, M. Gerstenberger, N. Litchfield, R. V. Dissen, and other (2012), National Seismic Hazard Model for New Zealand: 2010 Update, Bulletin of the Seismological Society of America, 102(4), 1514-1542, https://doi.org/10.1785/0120110170.
26. Stock, C. (2002), Adaptive Kernel Estimation and Continuous Probability Representation of Historical Earthquake Catalogs, Bulletin of the Seismological Society of America, 92(3), 904-912, https://doi.org/10.1785/0120000233.
27. Ulomov, V. I., and The GSHAP Region Working Group (1999), Seismic hazard of Northern Eurasia, Annals of Geophysics, 42(6), 1023-1038, https://doi.org/10.4401/ag-3785.
28. Vorobieva, I., C. Narteau, P. Shebalin, F. Beauducel, A. Nercessian, V. Clouard, and M.-P. Bouin (2013), Multiscale Mapping of Completeness Magnitude of Earthquake Catalogs, Bulletin of the Seismological Society of America, 103(4), 2188-2202, https://doi.org/10.1785/0120120132.
29. Vorobieva, I. A., A. D. Gvishiani, B. A. Dzeboev, B. V. Dzeranov, Y. V. Barykina, and A. O. Antipova (2022), Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogs, Frontiers in Earth Science, 10, https://doi.org/10.3389/feart.2022.820277.
30. Wessel, P., J. F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W. H. F. Smith, and D. Tian (2019), The Generic Mapping Tools Version 6, Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564, https://doi.org/10.1029/2019GC008515.
31. Wyss, M., and A. N. V. Kossobokov (2012), Errors in expected human losses due to incorrect seismic hazard estimates, Natural Hazards, 62(3), 927-935, https://doi.org/10.1007/s11069-012-0125-5.
32. Zechar, J. D., M. C. Gerstenberger, and D. A. Rhoades (2010), Likelihood-Based Tests for Evaluating Space-Rate-Magnitude Earthquake Forecasts, Bulletin of the Seismological Society of America, 100(3), 1184-1195, https://doi.org/10.1785/0120090192.