Geophysical Center of the Russian Academy of Sciences (Laboratory of Geoinformatics and Geomagnetic Studies, senior research scientist)
Russian Federation
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Russian Federation
Russian Federation
Moscow, Russian Federation
Russian Federation
UDC 537.67
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
It was proposed to introduce new regional geomagnetic indices SME-R and VAR characterizing the values of the geomagnetic field perturbation and its variability (i.e., dB/dt) in the Russian sector at auroral latitudes into space weather studies. The indices are calculated from data of the Russian magnetic stations at geomagnetic latitudes from 40° to 70°. We compared the unofficial and regional indices with the standard planetary indices during some magnetic storms of 2015. In addition to the official IAGA indices Dst/ SYM-H, AE, PC, modified and regional indices SME, PC-n, ULF, EI, Wp (Pi2) were considered. The analysis of these events showed that some auroral activations confidently distinguished by the SME index can be missed by the standard AE index. The discrepancy between the standard PC and the refined PC-n indices reaches 1 mV/m to 2 mV/m during strong perturbations. The variability of the magnetic field characterized by the VAR index is not uniquely related to the level of geomagnetic perturbation characterized by the AE or SME-R indices. The events considered show that the use of planetary indices to estimate regional space weather perturbations can lead to false conclusions. The database of standard, modified, and new regional indices for 2015 is freely available at the FTP site ftp://indexguest:indexguest@imagftp.gcras.ru/ for testing.
Geomagnetic indices, substorm, geomagnetic variations, geoinduced currents
1. Afraimovich E. L., Astafyeva E. I., Demyanov V. V., et al. Mid-latitude amplitude scintillation of GPS signals and GPS performance slips // Advances in Space Research. — 2009. — Vol. 43, no. 6. — P. 964–972. — https://doi.org/10.1016/j.asr.2008.09.015.
2. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems // Izvestiya, Physics of the Solid Earth. — 2018. — Vol. 54, no. 1. — P. 52–65. — https://doi.org/10.1134/s1069351318010032.
3. Borovsky J. E. and Yakymenko K. Systems science of the magnetosphere: Creating indices of substorm activity, of the substorm-injected electron population, and of the electron radiation belt // Journal of Geophysical Research: Space Physics. — 2017. — Vol. 122, no. 10. — P. 10012–10035. — https://doi.org/10.1002/2017ja024250.
4. Currie J. L. and Waters C. L. On the use of geomagnetic indices and ULF waves for earthquake precursor signatures // Journal of Geophysical Research: Space Physics. — 2014. — Vol. 119, no. 2. — P. 992–1003. — https://doi.org/10.1002/2013ja019530.
5. Evdokimova M. A. and Petrukovich A. A. Estimation of the westward auroral electrojet current using sparse magnetometer chain data // Annales Geophysicae. — 2020. — Vol. 38, no. 1. — P. 109–121. — https://doi.org/10.5194/angeo-38-109-2020.
6. Forsyth C., Rae I. J., Coxon J. C., et al. A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) // Journal of Geophysical Research: Space Physics. — 2015. — Vol. 120, no. 12. — P. 10592– 10606. — https://doi.org/10.1002/2015JA021343.
7. Gjerloev J. W. The SuperMAG data processing technique // Journal of Geophysical Research: Space Physics. — 2012. — Vol. 117, A9. — https://doi.org/10.1029/2012ja017683.
8. Gvishiani A. D., Soloviev A. A., Sidorov R. V., et al. Successes of the organization of geomagnetic monitoring in Russia and the near abroad // Vestnik Otdelenia nauk o Zemle RAN. — 2018. — Vol. 10, no. 4. — NZ4001. — https://doi.org/10.2205/2018nz000357. — (In Russian).
9. Janzhura A., Troshichev O. and Stauning P. Unified PC indices: Relation to isolated magnetic substorms // Journal of Geophysical Research: Space Physics. — 2007. — Vol. 112, A9. — https://doi.org/10.1029/2006ja012132.
10. Kosterin N. A., Pilipenko V. A. and Dmitriev E. M. On Global Ultralow Frequency Electromagnetic Signals Prior to Earthquakes // Geophysical Research. — 2015. — Vol. 16, no. 1. — P. 24–34. — (In Russian).
11. Kozyreva O. V. and Kleimenova N. G. Estimation of storm-time level of day-side wave geomagnetic activity using a new ULF index // Geomagnetism and Aeronomy. — 2008. — Vol. 48, no. 4. — P. 491–498. — https://doi.org/10.1134/s0016793208040099.
12. Kozyreva O. V. and Kleimenova N. G. Variations in the ULF index of geomagnetic pulsations during strong magnetic storms // Geomagnetism and Aeronomy. — 2009. — Vol. 49, no. 4. — P. 425–437. — https://doi.org/10.1134/s0016793209040021.
13. Kozyreva O. V., Pilipenko V. A., Zakharov V. I., et al. GPS-TEC response to the substorm onset during April 5, 2010, magnetic storm // GPS Solutions. — 2016. — Vol. 21, no. 3. — P. 927–936. — https://doi.org/10.1007/s10291-016-0581-6.
14. McPherron R. L. and Chu X. The Mid-Latitude Positive Bay and the MPB Index of Substorm Activity // Space Science Reviews. — 2016. — Vol. 206, no. 1–4. — P. 91–122. — https://doi.org/10.1007/s11214-016-0316-6.
15. Nagai T., Baker D. N. and Higbie P. R. Development of substorm activity in multiple-onset substorms at synchronous orbit // Journal of Geophysical Research: Space Physics. — 1983. — Vol. 88, A9. — P. 6994–7004. — https://doi.org/10.1029/ja088ia09p06994.
16. Newell P. T. and Gjerloev J. W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power // Journal of Geophysical Research: Space Physics. — 2011a. — Vol. 116, A12. — A12211. — https://doi.org/10.1029/2011JA016779.
17. Newell P. T. and Gjerloev J. W. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices // Journal of Geophysical Research: Space Physics. — 2011b. — Vol. 116, A12. — A12232. — https://doi.org/10.1029/2011JA016936.
18. Nosé M., Iyemori T., Wang L., et al. Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude // Space Weather. — 2012. — Vol. 10, no. 8. — S08002. — https://doi.org/10.1029/2012SW000785.
19. Pick L. J. L. and Korte M. An annual proxy for the geomagnetic signal of magnetospheric currents on Earth based on observatory data from 1900-2010 // Geophysical Journal International. — 2017. — Vol. 211, no. 2. — P. 1223–1236. — https://doi.org/10.1093/gji/ggx367.
20. Pilipenko V. A., Kozyreva O. V., Engebretson M. J., et al. ULF wave power index for space weather and geophysical applications: A review // Russian Journal of Earth Sciences. — 2017. — Vol. 17, no. 2. — ES1004. — https://doi.org/10.2205/2017es000597.
21. Ptitsyna N. G., Tyasto M. I., Kasinsky V. V., et al. Space weather effect on engineering systems: failures in the railway telemetry during geomagnetic storms // Solnechno-Zemnaya Fizika. — 2008. — Vol. 2, no. 12. — P. 360. — (In Russian).
22. Sidorov R., Soloviev A., Krasnoperov R., et al. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification // Geoscientific Instrumentation, Methods and Data Systems. — 2017. — Vol. 6, no. 2. — P. 473–485. — https://doi.org/10.5194/gi-6-473-2017.
23. Sobolev G. A., Zakrzhevskaya N. A. and Kharin E. P. On the Relation Between Seismicity and Magnetic Storms // Izvestiya, Physics of the Solid Earth. — 2001. — Vol. 37, no. 11. — P. 917–927.
24. Sokolova O. N., Sakharov Ya. A., Gritsutenko S. S., et al. Utilization-Based Energy Optimization Energy Storage // Proceedings of the Russian Academy of Sciences. Power engineering. — 2019. — No. 5. — P. 33–52. — https://doi.org/10.1134/S0002331019050145. — (In Russian).
25. Stauning P. A new index for the interplanetary merging electric field and geomagnetic activity: Application of the unified polar cap indices // Space Weather. — 2007. — Vol. 5, no. 9. — S09001. — https://doi.org/10.1029/2007sw000311.
26. Surkov V. V. and Pilipenko V. A. Estimate of ULF electromagnetic noise caused by a fluid flow during seismic or volcano activity // Annals of Geophysics. — 2016. — Vol. 58, no. 6. — S0655. — https://doi.org/10.4401/ag-6767.
27. Troshichev O. and Janzhura A. Space Weather Monitoring by Groundbased Means. — Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. — 288 p. — https://doi.org/10.1007/978-3-642-16803-1.
28. Viljanen A., Tanskanen E. I. and Pulkkinen A. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field // Annales Geophysicae. — 2006. — Vol. 24, no. 2. — P. 725–733. — https://doi.org/10.5194/angeo-24-725-2006.
29. Vorobev A. V., Pilipenko V. A., Sakharov Ya. A., et al. Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents // Solar-Terrestrial Physics. — 2019. — Vol. 5, no. 1. — P. 35–42. — https://doi.org/10.12737/stp-51201905.
30. Vorobev A. V., Soloviev A. A., Pilipenko V. A., et al. Interactive computer model for aurora forecast and analysis // Solar-Terrestrial Physics. — 2022. — Vol. 8, no. 2. — P. 84–90. — https://doi.org/10.12737/stp-82202213.




