Comparative Influence of Hydrometeorological Processes on the Interannual Variability of Seasonal Fluctuations of the Baltic Sea Level
Abstract and keywords
Abstract (English):
With the help of long-term average daily tide gauge observations of sea level, satellite altimetry measurements and data from reanalyses of meteorological and hydrophysical fields, the features and physical mechanisms of interannual variability of seasonal fluctuations in the level of the Baltic Sea are investigated. It is shown that for the period 1889-2022 in Stockholm, in interannual changes in the amplitudes of harmonics Sa, Ssa, Sta, Sqa, there are statistically insignificant positive linear trends, against the background of which long-term cycles with time scales approximately from 20–35 to 55 years and very significant changes in amplitudes from 0.5–1.0 to 25–27 centimeters are observed. In recent decades, the harmonics Sa, Ssa, and Sta have seen a noticeable decrease in the amplitudes and dispersion of oscillations. The results of mutual correlation and multiple regression analyses of anomalies of seasonal fluctuations in sea level and various hydrometeorological processes indicate that the largest contribution to the interannual variability of seasonal fluctuations in sea level is made by changes in the tangential friction of the wind. The second most important processes are changes in atmospheric pressure over the sea and water exchange between the Baltic and North Seas. Changes in freshwater balance and density have the smallest impact on interannual variability in seasonal sea-level patterns.

Keywords:
sea level, satellite altimeter measurements, reanalysis data, seasonal fluctuations, moving harmonic analysis, interannual variability, trends, wind stress, atmospheric pressure, steric sea level oscillations, fresh balance, water exchange, multiple regression analysis
Text
Text (PDF): Read Download
Text (PDF): Read Download
Text (PDF): Read Download
References

1. Barbosa Susana M. and Donner Reik V. Long-term changes in the seasonality of Baltic sea level // Tellus A: Dynamic Meteorology and Oceanography. — 2016. — Vol. 68, no. 1. — P. 30540. — DOI:https://doi.org/10.3402/tellusa.v68.30540.

2. Belonenko T. V. and Koldunov A. V. Steric oscillations of the sea level in the north-western Pacific // Vestnik of St. Petersburg State University. — 2006. — Vol. 7, no. 3. — P. 81–88. — EDN: https://elibrary.ru/RTTKQN.

3. Boor C. de. A Practical Guide to Splines. — Springer-Verlag, 1978. — P. 325.

4. Bretherton F. P., Davis R. E. and Fandry C. B. A technique for objective analysis and design of oceanographic experiments applied to MODE-73 // Deep Sea Research and Oceanographic Abstracts. — 1976. — Vol. 23, no. 7. — P. 559–582. — DOI:https://doi.org/10.1016/0011-7471(76)90001-2.

5. Cartwright D. E. On the smoothing of climatological time series, with application to sea-level at Newlyn // Geophysical Journal International. — 1983. — Vol. 75, no. 3. — P. 639–658. — DOI:https://doi.org/10.1111/j.1365-246X.1983.tb05003.x.

6. Cheng Y., Xu Q. and Li X. Spatio-Temporal Variability of Annual Sea Level Cycle in the Baltic Sea // Remote Sensing. — 2018. — Vol. 10, no. 4. — P. 528–552. — DOI:https://doi.org/10.3390/rs10040528.

7. Ekman M. A common pattern for interannual and periodical sea level variations in the Baltic Sea and adjacent waters // Geophysica. — 1996. — Vol. 32, no. 3. — P. 261–272.

8. Ekman M. The Changing Level of the Baltic Sea during 300 Years: A Clue to Understanding the Earth. — Summer Institute for Historical Geophysics, 2009.

9. Ekman M. and Stigebrandt A. Secular change of the seasonal variation in sea level and of the pole tide in the Baltic Sea // Journal of Geophysical Research: Oceans. — 1990. — Vol. 95, no. C4. — P. 5379–5383. — DOI:https://doi.org/10.1029/JC095iC04p05379.

10. Fuchs V. R. Hydrodynamic principles of interpretation of altimetry surveys of the sea surface // Sea level variations. — Saint Petersburg : RSHU, 2003. — P. 79–91.

11. Gill A. E. and Niller P. P. The theory of the seasonal variability in the ocean // Deep Sea Research and Oceanographic Abstracts. — 1973. — Vol. 20, no. 2. — P. 141–177. — DOI:https://doi.org/10.1016/0011-7471(73)90049-1.

12. Gordeeva S. M. and Malinin V. N. Gulf of Finland sea level Variability. — Saint Petersburg : RSHU, 2014. — P. 180. — EDN: https://elibrary.ru/VWABFU.

13. Greatbatch R. J. A note on the representation of steric sea level in models that conserve volume rather than mass // Journal of Geophysical Research: Oceans. — 1994. — Vol. 99, no. C6. — P. 12767–12771. — DOI:https://doi.org/10.1029/94jc00847.

14. Gustafsson B. G. and Andersson H. C. Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea // Journal of Geophysical Research: Oceans. — 2001. — Vol. 106, no. C9. — P. 19731–19744. — DOI:https://doi.org/10.1029/2000JC000593.

15. Hordoir R., Axell L., Löptien U., et al. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea // Journal of Geophysical Research: Oceans. — 2015. — Vol. 120, no. 10. — P. 6653–6668. — DOI:https://doi.org/10.1002/2014jc010642.

16. Hünicke B. and Zorita E. Trends in the amplitude of Baltic Sea level annual cycle // Tellus A: Dynamic Meteorology and Oceanography. — 2008. — Vol. 60, no. 1. — P. 154–164. — DOI:https://doi.org/10.1111/j.1600-0870.2007.00277.x.

17. Hydrometeorology and hydrochemistry of the seas of the USSR: Project "Seas of the USSR". Volume III Baltic Sea. Issue I Hydrometeorological conditions / ed. by F. S. Terzieva, V. A. Rozhkova and A. I. Smirnova. — Saint Petersburg : Gidrometeoizdat, 1992. — P. 451. — EDN: https://elibrary.ru/QKFOVS.

18. Jackett D. R. and Mcdougall T. J. Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability // Journal of Atmospheric and Oceanic Technology. — 1995. — Vol. 12, no. 2. — P. 381–389. — DOI:https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

19. Jakobsen F., Hansen I. S., Ottesen Hansen N.-E., et al. Flow resistance in the Great Belt, the biggest strait between the North Sea and the Baltic Sea // Estuarine, Coastal and Shelf Science. — 2010. — Vol. 87, no. 2. — P. 325–332. — DOI:https://doi.org/10.1016/j.ecss.2010.01.014.

20. Johansson M. M. and Kahma K. K. On the statistical relationship between the geostrophic wind and sea level variations in the Baltic Sea // Boreal Environment Research. — 2016. — Vol. 21. — P. 25–43.

21. Kowalczyk K., Pajak K., Wieczorek B., et al. An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry // Remote Sensing. — 2021. — Vol. 13, no. 11. — P. 2173. — DOI:https://doi.org/10.3390/rs13112173.

22. Labuz T. A. and Kowalewska-Kalkowska H. Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea // Climate Research. — 2011. — Vol. 48, no. 1. — P. 93–101. — DOI:https://doi.org/10.3354/cr00927.

23. Le Traon P. Y., Nadal F. and Ducet N. An Improved Mapping Method of Multisatellite Altimeter Data // Journal of Atmospheric and Oceanic Technology. — 1998. — Vol. 15, no. 2. — P. 522–534. — DOI:https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

24. Leppäranta M. and Myrberg K. Physical Oceanography of the Baltic Sea. — Springer Berlin Heidelberg, 2009. — DOI:https://doi.org/10.1007/978-3-540-79703-6.

25. Lisitzin E. Sea-Level Changes. — Elsevier Science & Technology Books, 1974.

26. Malinin V. N. Statistical methods of hydrometeorological information analysis. — Saint Petersburg : RSHU, 2008. — P. 408. — EDN: https://elibrary.ru/QKIFPF.

27. Männikus R., Soomere T. and Viška M. Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961-2018 // Estuarine, Coastal and Shelf Science. — 2020. — Vol. 245. — P. 106827. — DOI:https://doi.org/10.1016/j.ecss.2020.106827.

28. Medvedev I. P. Seasonal fluctuations of the Baltic Sea level // Russian Meteorology and Hydrology. — 2014. — Vol. 39, no. 12. — P. 814–822. — DOI:https://doi.org/10.3103/S106837391412005X.

29. Mohrholz V. Major Baltic Inflow Statistics - Revised // Frontiers in Marine Science. — 2018. — Vol. 5. — DOI:https://doi.org/10.3389/fmars.2018.00384.

30. Nerger L., Hiller W. and Schröter J. A comparison of error subspace Kalman filters // Tellus A: Dynamic Meteorology and Oceanography. — 2005. — Vol. 57, no. 5. — P. 715–735. — DOI:https://doi.org/10.3402/tellusa.v57i5.14732

31. Pajak K. and Kowalczyk K. A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data // Advances in Space Research. — 2019. — Vol. 63, no. 5. — P. 1768–1780. — DOI:https://doi.org/10.1016/j.asr.2018.11.022.

32. Pemberton P., Löptien U., Hordoir R., et al. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea // Geoscientific Model Development. — 2017. — Vol. 10, no. 8. — P. 3105–3123. — DOI:https://doi.org/10.5194/gmd-10-3105-2017.

33. Plag H.-P. and Tsimplis M. N. Temporal variability of the seasonal sea-level cycle in the North Sea and Baltic Sea in relation to climate variability // Global and Planetary Change. — 1999. — Vol. 20, no. 2/3. — P. 173–203. — DOI:https://doi.org/10.1016/S0921-8181(98)00069-1.

34. Pujol M.-I., Faugère Y., Taburet G., et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years // Ocean Science. — 2016. — Vol. 12, no. 5. — P. 1067–1090. — DOI:https://doi.org/10.5194/os-12-1067-2016.

35. Rozhkov V. A. Theory and methods of statistical estimation of probability characteristics of random variables and functions with hydrometeorological examples. Book II. — Saint Petersburg : Gidrometeoizdat, 2002. — P. 780.

36. Samuelsson M. and Stigebrandt A. Main characteristics of the long-term sea level variability in the Baltic sea // Tellus A: Dynamic Meteorology and Oceanography. — 1996. — Vol. 48, no. 5. — P. 672. — DOI:https://doi.org/10.3402/TELLUSA.V48I5.12165.

37. Stramska M. and Chudziak N. Recent multiyear trends in the Baltic Sea level // Oceanologia. — 2013. — Vol. 55, no. 2. — P. 319–337. — DOI:https://doi.org/10.5697/oc.55-2.319.

38. Stramska M., Kowalewska-Kalkowska H. and Świrgoń M. Seasonal variability in the Baltic Sea level // Oceanologia. — 2013. — Vol. 55, no. 4. — P. 787–807. — DOI:https://doi.org/10.5697/oc.55-4.787.

39. Voinov G. N. Tides and Tidal streams // Polar Seas Oceanography. An integrated case study of the Kara Sea. — Springer, 2002. — P. 61–77.

40. Weisse R., Dailidien˙e I., Hünicke B., et al. Sea level dynamics and coastal erosion in the Baltic Sea region // Earth System Dynamics. — 2021. — Vol. 12, no. 3. — P. 871–898. — DOI:https://doi.org/10.5194/esd-12-871-2021.

41. Zakharchuk E. A. Synoptic variability of sea level and currents in the seas washing the northwestern and arctic coasts of Russia. — Saint Petersburg : Gidrometeoizdat, 2008. — P. 359. — EDN: https://elibrary.ru/QKIBRH.

42. Zakharchuk E. A., Litina E. N., Klevantsov Yu. P., et al. Nonstationarity of the hydrometeorological processes in the Baltic sea at climate changing conditions // Proceedings of SOI. — 2017. — Vol. 218. — P. 6–62. — EDN: https://elibrary.ru/YLMAZW.

43. Zakharchuk E. A., Sukhachev V. N., Tikhonova N. A., et al. Seasonal fluctuations in Baltic sea level determined from satellite altimetry // Continental Shelf Research. — 2022a. — Vol. 249. — P. 104863. — DOI:https://doi.org/10.1016/j.csr.2022.104863.

44. Zakharchuk E. A., Sukhachev V. N., Tikhonova N. A., et al. Stationary and Non-Stationary Description of the Seasonal Sea Level Oscillations in the Baltic Sea Based on the Tide Gauge Data // Morskoy Gidrofizicheskiy Zhurnal. — 2022b. — Vol. 38, no. 6. — P. 655–678. — DOI:https://doi.org/10.22449/0233-7584-2022-6-655-678.

45. Zakharchuk E. A., Sukhachev V. N., Tikhonova N. A., et al. Steric Oscillations of the Baltic Sea Level // Russian Journal of Earth Sciences. — 2023. — Vol. 23. — ES4014. — DOI:https://doi.org/10.2205/2023ES000846.

46. Zakharchuk E. A., Tikhonova N., Zakharova E., et al. Spatiotemporal structure of Baltic free sea level oscillations in barotropic and baroclinic conditions from hydrodynamic modelling // Ocean Science. — 2021. — Vol. 17, no. 2. — P. 543–559. — DOI:https://doi.org/10.5194/os-17-543-2021.

47. Zakharchuk E. A. and Tikhonova N. A. On the spatiotemporal structure and mechanisms of the Neva River flood formation // Russian Meteorology and Hydrology. — 2011. — Vol. 36, no. 8. — P. 534–541. — DOI:https://doi.org/10.3103/S106837391108005X.

Login or Create
* Forgot password?