The Polymetallic Deposits of the Western European Plate and Structure of the Earth's Crust According to GOCE Gravity Data
Abstract and keywords
Abstract (English):
For the first time, the results of modern studies of the earth's crust based on gravity data from the GOCE satellite Project are used for a comparative regional metallogenic analysis of the geodynamic settings of the formation of polymetallic deposits in Western Europe and the Mediterranean segment of the Tethys belt. It is shown that exhalative sulfide deposits (SEDEX) and cuprous sandstones and shales (SSC) are mainly located in the earth's crust with a predominant development of the lower “basalt” layer of the earth's crust. Pyrite copper and lead-zinc deposits in volcanogenic rocks (VMS), as well as some occurrences of the SEDEX type, are found in supra-subduction island-arc and accretionary crustal settings with a predominant development of the middle “granite” layer. Lead-zinc ores of the Mississippi type (MVT) are localized in deep pericratonic sedimentary basins with petroleum-bearing specialization on the shelf and continental slope, regardless of the stratification of the earth's crust. The results obtained can be used for regional forecasting and metallogenic constructions, prospecting and assessment of new deposits.

Keywords:
Western Europe, Tethys, lithosphere, Earth's crust, base metal, deposit, SEDEX, MVT, VMS, SSC
Text
Text (PDF): Read Download
References

1. Artemieva, I. M., and R. Meissner (2012), Crustal thickness controlled by plate tectonics: A review of crust-mantle interaction processes illustrated by European examples, Tectonophysics, 530-531, 18-49, https://doi.org/10.1016/j.tecto.2011.12.037, EDN: https://elibrary.ru/PGPTQX.;

2. Artemieva, I. M., and A. Shulgin (2019), Making and altering the crust: A global perspective on crustal structure and evolution, Earth and Planetary Science Letters, 512, 8-16, https://doi.org/10.1016/j.epsl.2019.01.033, EDN: https://elibrary.ru/MKCXGQ.;

3. Asch, K. (2003), The 1 : 5 Million International Geological Map of Europe and Adjacent Areas. Development and Implementation of a GIS-enabled Concept, Schweizerbartsche Verlagsbuchhandlung,

4. E. Balagansky, V. V., I. A. Gorbunov, and S. V. Mudruk (2016), Paleoproterozoic Lapland-Kola and Svecofennian orogens (Baltic Shield), Herald of the Kola Science Center of RAS, (3(26)) (in Russian).

5. Belousov, V. V., and N. I. Pavlenkova (1989), Types of the earth’s crust in Europe and the North Atlantic, Geotectonics, (3), 3-14 (in Russian).

6. Blundell, D., N. Arndt, P. R. Cobbold, and C. Heinrich (2007), Geodynamics and Ore Deposit Evolution in Europe. Special Issue of Ore Geology Reviews, Geological Magazine, 144(3), 604-604, https://doi.org/10.1017/S0016756806002743, EDN: https://elibrary.ru/HZKEHL.

7. Boni, M., and G. C. Amstutz (1982), The Permo-Triassic Paleokarst Ores of Southwest Sardinia (Iglesiente-Sulcis). An Attempt at a Reconstruction of Paleokarst Conditions, in Ore Genesis, pp. 73-82, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-68344-2_8.

8. Bortnikov, N. S., A. V. Volkov, A. L. Galyamov, I. V. Vikentyev, V. V. Aristov, A. V. Lalomov, and K. Y. Murashov (2016), Mineral resources of high-tech metals in Russia: state and development prospects, Geology of ore deposits, 58(2), 97-119, https://doi.org/10.7868/S0016777016020027 (in Russian), EDN: https://elibrary.ru/VTOUMD.;

9. Cammarano, F., and M. Guerri (2017), Global thermal models of the lithosphere, Geophysical Journal International, 210(1), 56-72, https://doi.org/10.1093/gji/ggx144, EDN: https://elibrary.ru/YDPNNZ.;

10. Dergachev, A. L., and N. I. Eremin (2008), The relationship between volcanic sulfide and stratiform lead-zinc mineralization in the history of the Earth, Vestnik Moskovskogo Universiteta. Seriâ 4: Geologiâ, (4), 26-34 (in Russian), EDN: https://elibrary.ru/JVAPUT.;

11. Donets, A. I., and V. D. Konkin (2017), Geological and industrial types and regional geological features of stratiform lead-zinc deposits in carbonate strata, Otechestvennaya Geologia, (6), 31-39 (in Russian), EDN: https://elibrary.ru/ZWQMHR.;

12. Fountain, D. M., R. Arculus, and R. W. Kay (Eds.) (1993), Continental Lower Crust, Developments in Geotectonics, Elsevier.

13. Galyamov, A. L., A. V. Volkov, and K. V. Lobanov (2021), Application of Models of the Earth’s Crust-Depth Structure Based on GOCE Satellite Gravitational Data for Forecasting and Prospecting Pb-Zn Deposits in the Arctic Zone of Russia, Izvestiya, Atmospheric and Oceanic Physics, 57(12), 1751-1761, https://doi.org/10.1134/S0001433821120082.; ; EDN: https://elibrary.ru/HKVSGL

14. Galyamov, A. L., A. V. Volkov, and K. V. Lobanov (2022), Lithospheric Control of the Location of Polymetallic Deposits in the Folded Framework of the Siberian Platform, Doklady Earth Sciences, 506(2), 756-760, https://doi.org/10.1134/S1028334X22600396.; DOI: https://doi.org/10.1134/s1028334x22600396; EDN: https://elibrary.ru/MUCDCC

15. Galyamov, A. L., A. V. Volkov, K. V. Lobanov, and K. Y. Murashov (2023), Structure of the Earth’s crust according to gravity data from the GOCE satellite and the patterns of location of polymetallic deposits in the frame of the Siberian and East European platforms, Issledovaniye Zemli iz kosmosa, (1), 3-23, https://doi.org/10.31857/S0205961423010049 (in Russian), EDN: https://elibrary.ru/MLTXIF.;

16. Gorzhevsky, D. I., and I. T. Makeeva (1982), Stratiform deposits of non-ferrous metals: (Localization conditions and origin of stratiform deposits of lead, zinc and copper), VINITI, Moscow (in Russian).

17. Graciansky, P.-C. D., D. G. Roberts, and P. Tricart (2010), Western Alps, from Rift to Passive Margin to Orogenic Belt. An Integrated Geoscience Overview, Elsevier.

18. Groves, D. I., and F. P. Bierlein (2007), Geodynamic settings of mineral deposit systems, Journal of the Geological Society, 164(1), 19-30, https://doi.org/10.1144/0016-76492006-065.

19. Hacker, B. R., P. B. Kelemen, and M. D. Behn (2015), Continental Lower Crust, Annual Review of Earth and Planetary Sciences, 43(1), 167-205, https://doi.org/10.1146/annurev-earth-050212-124117.; ; EDN: https://elibrary.ru/UQXXHF

20. Hasterok, D., J. A. Halpin, A. S. Collins, M. Hand, C. Kreemer, M. G. Gard, and S. Glorie (2022), New Maps of Global Geological Provinces and Tectonic Plates, Earth-Science Reviews, 231, 104,069, https://doi.org/10.1016/j.earscirev.2022.104069.; ; EDN: https://elibrary.ru/DAQNTI

21. Houseman, G. A., and P. Molnar (1997), Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere, Geophysical Journal International, 128(1), 125-150, https://doi.org/10.1111/j.1365-246x.1997.tb04075.x.

22. Huismans, R. S., Y. Y. Podladchikov, and S. A. P. L. Cloetingh (2002), The Pannonian basin: Dynamic modelling of the transition from passive to active rifting, Stephan Mueller Special Publication Series, 3, 41-63, https://doi.org/10.5194/SMSPS-3-41-2002.

23. Klyuykov, A. A. (2018), New era in the study of the Earth’s gravitational field, Naučnye trudy Instituta astronomii RAN, (2(2)), 20-25, https://doi.org/10.26087/INASAN.2018.2.2.003 (in Russian), EDN: https://elibrary.ru/YRNSAX.

24. Laske, G., G. Masters, Z. Ma, and M. E. Pasyanos (2013), Update on CRUST1.0-A 1-degree global model of Earth’s crust, Geophysical Research Abstracts, 15.

25. Leach, D. L., D. F. Sangster, K. D. Kelley, R. R. Large, G. Garven, C. R. Allen, J. Gutzmer, and S. Walters (2005), SedimentHosted Lead-Zinc Deposits: A Global Perspective, in One Hundredth Anniversary Volume, pp. 561-607, Society of Economic Geologists, https://doi.org/10.5382/AV100.18.

26. Luchitskaya, M. V. (2014), Granitoid magmatism and continental crust formation of the northern framework of Pacific Ocean in Mesozoic-Cenozoic, 607, GEOS, Moscow (in Russian), EDN: https://elibrary.ru/XRALJB.;

27. Makarov, V. I. (Ed.) (2005), Recent geodynamics of areas of intracontinental collision mountain building (Central Asia), Scientific world, Moscow (in Russian).

28. Mazukabzov, A. M., E. V. Sklyarov, T. V. Donskaya, and D. V. Gladkochub (2011), Complexes of metamorphic cores of Central Asia and their nature, in Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent): Proceedings of the meeting, vol. 9, pp. 134-139, Institute of the Earth’s Crust SB RAS, Irkutsk (in Russian).

29. Mo, X., Z. Hou, Y. Niu, G. Dong, X. Qu, Z. Zhao, and Z. Yang (2007), Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet, Lithos, 96(1-2), 225-242, https://doi.org/10.1016/j.lithos.2006.10.005.

30. Pavlenkova, N. I., S. N. Kashubin, and G. A. Pavlenkova (2016), The Earth’s crust of deep platform depressions of Northern Eurasia and the nature of their formation, Physics of the Earth, (5), 150-164, https://doi.org/10.7868/S0002333716050124 (in Russian), EDN: https://elibrary.ru/WHWCBF.;

31. Pavlov, D. I., and A. L. Galyamov (1988), Geological relationships between stratiform lead-zinc mineralization and oil-producing strata (on the example of Southern Verkhoyansk), Litologiâ i poleznye iskopaemye, (3), 89-100 (in Russian).

32. Perri, F., S. Critelli, A. Martín-Algarra, M. Martín-Martín, V. Perrone, G. Mongelli, and M. Zattin (2013), Triassic redbeds in the Malaguide Complex (Betic Cordillera - Spain): Petrography, geochemistry and geodynamic implications, Earth-Science Reviews, 117, 1-28, https://doi.org/10.1016/j.earscirev.2012.11.002.

33. Pirajno, F. (2009), Hydrothermal Processes and Mineral Systems, Springer Netherlands, EDN: https://elibrary.ru/SQMGED.;

34. Plant, J., A. Whittaker, A. Demetriades, B. de Vivo, and J. Lexa (2005), The geological and tectonic framework of Europe, in FOREGS Geochemical Atlas of Europe. Part 1: Background Information. Methodology and Maps, pp. 23-42, Geological Survey of Finland ESPOO.

35. Reguzzoni, M., and D. Sampietro (2015), GEMMA: An Earth crustal model based on GOCE satellite data, International Journal of Applied Earth Observation and Geoinformation, 35, 31-43, https://doi.org/10.1016/j.jag.2014.04.002.

36. Richards, J. P. (2015), Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision, Ore Geology Reviews, 70, 323-345, https://doi.org/10.1016/j.oregeorev.2014.11.009.; ; EDN: https://elibrary.ru/URVCVD

37. Robertson, A., S. Karamata, and K. Šarić (2009), Overview of ophiolites and related units in the Late Palaeozoic-Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region, Lithos, 108(1-4), 1-36, https://doi.org/10.1016/J.LITHOS.2008.09.007.; DOI: https://doi.org/10.1016/j.lithos.2008.09.007; EDN: https://elibrary.ru/MNGPVR

38. Ruchkin, G. V. (1984), Precambrian stratiform base metal deposits, Nedra, Moscow (in Russian).

39. Ruchkin, G. V., and A. I. Donets (2002), Stratiform lead-zinc deposits in carbonate strata, 123 pp., TsNIGRI, Moscow (in Russian).

40. Schroll, E. (2005), Alpine type Pb-Zn-deposits (APT) hosted by Triassic carbonates, in Mineral Deposit Research: Meeting the Global Challenge, pp. 175-178, Springer Berlin Heidelberg, https://doi.org/10.1007/3-540-27946-6_46.

41. Tornos, F., C. Inverno, C. Casquet, A. Mateus, G. Ortiz, and V. Oliveira (2004), The metallogenic evolution of the Ossa-Morena zone, Journal of Iberian Geology, 30, 143-180.

42. Trifonov, V. G. (2017), Neotectonics of moving belts, 614, GEOS, Moscow (in Russian), EDN: https://elibrary.ru/RTGVPV.;

43. USGS (2012), Map of undiscovered conventional oil and gas resources of the world, https://certmapper.cr.usgs.gov/data/apps/world-energy/?resource=conventional, (date of access: 10.08.2023).

44. van Unen, M., L. Matenco, F. H. Nader, R. Darnault, O. Mandic, and V. Demir (2019), Kinematics of Foreland-Vergent Crustal Accretion: Inferences from the Dinarides Evolution, Tectonics, 38(1), 49-76, https://doi.org/10.1029/2018TC005066.; ; EDN: https://elibrary.ru/LKVJKX

45. Velasco, F., J. M. Herrero, I. Yusta, J. A. Alonso, I. Seebold, and D. Leach (2003), Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain, Economic Geology, 98(7), 1371-1396, https://doi.org/10.2113/98.7.1371.

46. Volkov, A. V., A. L. Galyamov, P. E. Belousov, and A. A. Wolfson (2020), Application of space technologies in metallogenic analysis of the Russian Arctic territory, Arctic: Ecology and Economy, (2(38)), 77-85, https://doi.org/10.25283/2223-4594-2020-2-77-85 (in Russian), EDN: https://elibrary.ru/GFSZJJ.;

47. Vos, W. D., M. J. Batista, A. Demetriades, M. Ďuriš, J. Lexa, J. Lis, K. Marsina, and P. O’Connor (2005), Metallogenic mineral provinces and world class ore deposits in Europe, in FOREGS Geochemical Atlas of Europe. Part 1: Background Information. Methodology and Maps, Geological Survey of Finland ESPOO.

48. Ysbaa, S., O. Haddouche, A. Boutaleb, L. Sami, and O. Kolli (2021), Mineralization and fluid inclusion characteristics of Pb-Zn-Fe-Ba (Cu, F, Sr) ore-deposits in northern east of Algeria, Arabian Journal of Geosciences, 14(11), https://doi.org/10.1007/s12517-021-07281-2.; ; EDN: https://elibrary.ru/CCESMV

49. Zhang, H.-F. (2007), Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution, Geological Society, London, Special Publications, 280(1), 35-54, https://doi.org/10.1144/SP280.2.

50. Zhou, Z., H. Wen, J. de Fourestier, C. Qin, and L. Liu (2022), Sulphur and metal sources of polymetallic vein-type, sedimentary exhalative-type and Mississippi Valley-type Zn-Pb deposits along the southeast margin of the Yangtze Block, Ore Geology Reviews, 147, 104,957, https://doi.org/10.1016/j.oregeorev.2022.104957.; ; EDN: https://elibrary.ru/ULNUNZ

Login or Create
* Forgot password?