from 01.01.2010 until now
Russian State Hydrometeorological University
Central Aerological Observatory
Russian Federation
Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation named after N. V. Pushkov RAS (IZMIRAN)
Russian State Hydrometeorological University
Russian Federation
Russian Federation
UDK 551.5 Метеорология. Климатология
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
In order to study the evolution of atmospheric tides, model simulations of the general atmospheric circulation were carried out using a 3-dimensional nonlinear mechanistic model “MUAM”. The following are considered as natural tropical oscillations: the quasi-biennial oscillation of the equatorial zonal wind (QBO) in the stratosphere and the El Ni˜no Southern Oscillation (ENSO). Changes in tidal amplitudes are analyzed at three 10-day time intervals before, during and after a sudden stratospheric warming (SSW). Composite SSWs consisting of 6 events within the calculation ensembles are considered for each QBO/ENSO combination. Migrating and non-migrating diurnal and semi-diurnal tides with zonal wave numbers 1 and 2 are studied. Numerical experiments have shown in particular, that the structure of tides is susceptible to the effects of SSW, while during SSWs the amplitudes of tides for different combinations of QBO – ENSO change differently. For example, during El Ni˜no and the easterly QBO phase, there is a noticeable weakening of the diurnal migrating tide during the SSW, while during La Ni˜na and the easterly QBO phase, on the contrary, the amplitude of the diurnal tide increases during the event, and after the SSW it weakens. Analysis of numerical experiments confirms existing ideas about significant variability of tides during SSW and demonstrates the most important source of this variability associated with combinations of QBO-ENSO dynamic effects.
Atmospheric dynamics, atmospheric tides, tropical oscillations, sudden stratospheric warming
1. Angelats i Coll M., Forbes J. M. Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 nonmigrating semidiurnal tides // Journal of Geophysical Research: Space Physics. — 2002. — Vol. 107, A8. — DOI:https://doi.org/10.1029/2001ja900179. DOI: https://doi.org/10.52002/0130-2906-2021-1-5-16; EDN: https://elibrary.ru/OGIIYX
2. Baldwin M. P., Dameris M., Shepherd T. G. How will the stratosphere affect climate change? // Science. — 2007. — Vol. 316, no. 5831. — P. 1576–1577. — DOI:https://doi.org/10.1126/science.1144303.
3. Baldwin M. P., Gray L. J., Dunkerton T. J., et al. The quasi-biennial oscillation // Reviews of Geophysics. — 2001. — Vol. 39, no. 2. — P. 179–229. — DOI:https://doi.org/10.1029/1999rg000073.
4. Butler A. H. SSWC: Sudden Stratospheric Warming Compendium data set. Table of major mid-winter SSWs in reanalyses products. — 2023. — (accessed: 20.03.2024) ; (in English). https://csl.noaa.gov/groups/csl8/sswcompendium/majorevents.html. DOI: https://doi.org/10.52002/0130-2906-2021-6-5-23; EDN: https://elibrary.ru/QSERWP
5. Efimov M. M., Gavrilov N. M. Determination of sudden stratospheric warming dates and their classification according to the JRA-55 reanalysis data // 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. — SPIE, 2023. — P. 172. — DOI:https://doi.org/10.1117/12.2690514. EDN: https://elibrary.ru/NDJAJZ
6. Efimov M. M., Gavrilov N. M. Verification of the Maxima of the Rate of Change of Atmospheric Parameters Method for Determining the Characteristics of Sudden Stratospheric Warmings // XXX International Symposium "Atmospheric and Ocean Optics. Atmospheric Physics". — Tomsk : IAO SB RAS, 2024. — DOI:https://doi.org/10.56820/OAO30E1. — (In Russian).
7. Ermakova T. S., Aniskina O. G., Statnaia I. A., et al. Simulation of the ENSO influence on the extra-tropical middle atmosphere // Earth, Planets and Space. — 2019. — Vol. 71, no. 8. — DOI:https://doi.org/10.1186/s40623-019-0987-9.
8. Ermakova T. S., Koval A. V., Smyshlyaev S. P., et al. Manifestations of Different El Niño Types in the Dynamics of the Extratropical Stratosphere // Atmosphere. — 2022. — Vol. 13, no. 12. — P. 2111. — DOI:https://doi.org/10.3390/atmos13122111.
9. Ermakova T. S., Koval A., Didenko K., et al. Influence of Natural Tropical Oscillations on Ozone Content and Meridional Circulation in the Boreal Winter Stratosphere // Atmosphere. — 2024. — Vol. 15, no. 6. — P. 717. — DOI:https://doi.org/10.3390/atmos15060717.
10. Forbes J. M. Atmospheric tides: 1. Model description and results for the solar diurnal component // Journal of Geophysical Research: Space Physics. — 1982. — Vol. 87, A7. — P. 5222–5240. — DOI:https://doi.org/10.1029/ja087ia07p05222.
11. Fuller-Rowell T., Wu F., Akmaev R., et al. A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics // Journal of Geophysical Research: Space Physics. — 2010. — Vol. 115, A10. — DOI:https://doi.org/10.1029/2010ja015524. DOI: https://doi.org/10.1186/s40623-019-0987-9; EDN: https://elibrary.ru/WUAKEB
12. Gan Q., Du J., Fomichev V. I., et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations // Journal of Geophysical Research: Space Physics. — 2017. — Vol. 122, no. 4. — P. 4801–4818. — DOI:https://doi.org/10.1002/2016JA023564. DOI: https://doi.org/10.3390/atmos15060717; EDN: https://elibrary.ru/NLLSYV
13. Garfinkel C. I., Hartmann D. L. Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere // Journal of Geophysical Research: Atmospheres. — 2007. — Vol. 112, no. D19. — DOI:https://doi.org/10.1029/2007jd008481. DOI: https://doi.org/10.3390/atmos13122111; EDN: https://elibrary.ru/SVUBQE
14. Gavrilov N. M., Efimov M. M. Automated Determination of Dates of Sudden Stratospheric Warmings // XXVII International Symposium "Atmospheric and Ocean Optics. Atmospheric Physics". — Tomsk : IAO SB RAS, 2021. — E26–E29. — (In Russian).
15. Gavrilov N. M., Koval A. V., Pogoreltsev A. I., et al. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios // Advances in Space Research. — 2018. — Vol. 61, no. 7. — P. 1819–1836. — DOI:https://doi.org/10.1016/j.asr.2017.08.022.
16. Geißler Ch., Jacobi Ch., Lilienthal F. Forcing mechanisms of the migrating quarterdiurnal tide // Annales Geophysicae. — 2020. — Vol. 38, no. 2. — P. 527–544. — DOI:https://doi.org/10.5194/angeo-38-527-2020. DOI: https://doi.org/10.1002/2016JA023564; EDN: https://elibrary.ru/AMSGIT
17. Hagan M. E., Forbes J. M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release // Journal of Geophysical Research: Atmospheres. — 2002. — Vol. 107, no. D24. — DOI:https://doi.org/10.1029/2001jd001236. DOI: https://doi.org/10.1029/2007JD008481; EDN: https://elibrary.ru/LWPMWR
18. Hagan M. E., Forbes J. M., Vial F. On modeling migrating solar tides // Geophysical Research Letters. — 1995. — Vol. 22, no. 8. — P. 893–896. — DOI:https://doi.org/10.1029/95gl00783. DOI: https://doi.org/10.1016/j.asr.2017.08.022; EDN: https://elibrary.ru/XXVXJR
19. He M., Forbes J. M., Chau J. L., et al. High-Order Solar Migrating Tides Quench at SSW Onsets // Geophysical Research Letters. — 2020. — Vol. 47, no. 6. — DOI:https://doi.org/10.1029/2019gl086778. DOI: https://doi.org/10.5194/angeo-38-527-2020; EDN: https://elibrary.ru/HJRRQW
20. Hibbins R. E., Espy P. J., Orsolini Y. J., et al. SuperDARN Observations of Semidiurnal Tidal Variability in the MLT and the Response to Sudden Stratospheric Warming Events // Journal of Geophysical Research: Atmospheres. — 2019. — Vol. 124, no. 9. — P. 4862–4872. — DOI:https://doi.org/10.1029/2018jd030157.
21. Hitchman M. H., Yoden S., Haynes P. H., et al. An Observational History of the Direct Influence of the Stratospheric Quasibiennial Oscillation on the Tropical and Subtropical Upper Troposphere and Lower Stratosphere // Journal of the Meteorological Society of Japan. Ser. II. — 2021. — Vol. 99, no. 2. — P. 239–267. — DOI:https://doi.org/10.2151/jmsj.2021-012.
22. Holton J. R., Tan H. C. The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb // Journal of the Atmospheric Sciences. — 1980. — Vol. 37, no. 10. — P. 2200–2208. — DOI:https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2 DOI: https://doi.org/10.1029/2019GL086778; EDN: https://elibrary.ru/VKNVRS
23. Hong H.-J., Reichler T. Local and remote response of ozone to Arctic stratospheric circulation extremes // Atmospheric Chemistry and Physics. — 2021. — Vol. 21, no. 2. — P. 1159–1171. — DOI:https://doi.org/10.5194/acp-21-1159-2021. DOI: https://doi.org/10.1029/2018JD030157; EDN: https://elibrary.ru/WQNZYD
24. Jacobi C., Portnyagin Y., Solovjova T., et al. Climatology of the semidiurnal tide at 52-56∘N from ground-based radar wind measurements 1985-1995 // Journal of Atmospheric and Solar-Terrestrial Physics. — 1999. — Vol. 61, no. 13. — P. 975–991. — DOI:https://doi.org/10.1016/s1364-6826(99)00065-6. DOI: https://doi.org/10.2151/jmsj.2021-012; EDN: https://elibrary.ru/QWPSPB
25. Jin H., Miyoshi Y., Pancheva D., et al. Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations // Journal of Geophysical Research: Space Physics. — 2012. — Vol. 117, A10. — DOI:https://doi.org/10.1029/2012ja017650.
26. Kolennikova M. A., Vargin P. N., Gushchina D. Yu. Interrelations between El Niño Indices and Major Characteristics of Polar Stratosphere According to CMIP5 Models and Reanalysis // Russian Meteorology and Hydrology. — 2021. — Vol. 46, no. 6. — P. 351–364. — DOI:https://doi.org/10.3103/s1068373921060017. DOI: https://doi.org/10.5194/acp-21-1159-2021; EDN: https://elibrary.ru/RZLLXW
27. Koval A. V., Gavrilov N. M., Kandieva K. K., et al. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Scientific Reports. — 2022a. — Vol. 12, no. 1. — DOI:https://doi.org/10.1038/s41598-022-26311-x. DOI: https://doi.org/10.1016/S1364-6826(99)00065-6; EDN: https://elibrary.ru/LFGEHB
28. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., et al. Dynamical Impacts of Stratospheric QBO on the Global Circulation up to the Lower Thermosphere // Journal of Geophysical Research: Atmospheres. — 2022b. — Vol. 127, no. 4. — DOI:https://doi.org/10.1029/2021jd036095. DOI: https://doi.org/10.1029/2012JA017650; EDN: https://elibrary.ru/WKWUDP
29. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., et al. Reactions of the Middle Atmosphere Circulation and Stationary Planetary Waves on the Solar Activity Effects in the Thermosphere // Journal of Geophysical Research: Space Physics. — 2019. — Vol. 124, no. 12. — P. 10645–10658. — DOI:https://doi.org/10.1029/2019ja027392. DOI: https://doi.org/10.1038/s41598-022-26311-x; EDN: https://elibrary.ru/JZUBKU
30. Kumar V., Yoden S., Hitchman M. H. QBO and ENSO Effects on the Mean Meridional Circulation, Polar Vortex, Subtropical Westerly Jets, and Wave Patterns During Boreal Winter // Journal of Geophysical Research: Atmospheres. — 2022. — Vol. 127, no. 15. — DOI:https://doi.org/10.1029/2022jd036691. DOI: https://doi.org/10.1029/2019JA027392; EDN: https://elibrary.ru/YRJBJB
31. Laštovička J. Forcing of the ionosphere by waves from below // Journal of Atmospheric and Solar-Terrestrial Physics. — 2006. — Vol. 68, no. 3–5. — P. 479–497. — DOI:https://doi.org/10.1016/j.jastp.2005.01.018. DOI: https://doi.org/10.1029/2021JD036095; EDN: https://elibrary.ru/TXUVCI
32. Lilienthal F., Jacobi C. Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation // Annales Geophysicae. — 2019. — Vol. 37, no. 5. — P. 943–953. — DOI:https://doi.org/10.5194/angeo-37-943-2019. DOI: https://doi.org/10.1029/2022jd036691; EDN: https://elibrary.ru/HEGFAS
33. Lilienthal F., Jacobi C., Geißler C. Forcing mechanisms of the terdiurnal tide // Atmospheric Chemistry and Physics. — 2018. — Vol. 18, no. 21. — P. 15725–15742. — DOI:https://doi.org/10.5194/acp-18-15725-2018. DOI: https://doi.org/10.1016/j.jastp.2005.01.018; EDN: https://elibrary.ru/MEUCIN
34. Limpasuvan V., Orsolini Y. J., Chandran A., et al. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause // Journal of Geophysical Research: Atmospheres. — 2016. — Vol. 121, no. 9. — P. 4518–4537. — DOI:https://doi.org/10.1002/2015jd024401. DOI: https://doi.org/10.5194/angeo-37-943-2019; EDN: https://elibrary.ru/EGGVZH
35. Ma Xuan, Wang Lei, Smith Doug, et al. ENSO and QBO modulation of the relationship between Arctic sea ice loss and Eurasian winter climate // Environmental Research Letters. — 2022. — Vol. 17, no. 12. — DOI:https://doi.org/10.1088/1748-9326/aca4e9. DOI: https://doi.org/10.5194/acp-18-15725-2018; EDN: https://elibrary.ru/UKCEKI
36. Manson A., Meek C., Teitelbaum H., et al. Climatologies of semi-diurnal and diurnal tides in the middle atmosphere (70-110 km) at middle latitudes (40-55∘ ) // Journal of Atmospheric and Terrestrial Physics. — 1989. — Vol. 51, no. 7/8. — P. 579–593. — DOI:https://doi.org/10.1016/0021-9169(89)90056-1.
37. Medvedeva I. V., Semenov A. I., Pogoreltsev A. I., et al. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations // Journal of Atmospheric and Solar-Terrestrial Physics. — 2019. — Vol. 187. — P. 22–32. — DOI:https://doi.org/10.1016/j.jastp.2019.02.005.
38. Nath D., Chen W., Zelin C., et al. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection // Scientific Reports. — 2016. — Vol. 6, no. 1. — DOI:https://doi.org/10.1038/srep24174.
39. Pancheva D., Mitchell N., Hagan M., et al. Global-scale tidal structure in the mesosphere and lower thermosphere during the PSMOS campaign of June-August 1999 and comparisons with the global-scale wave model // Journal of Atmospheric and Solar-Terrestrial Physics. — 2002. — Vol. 64, no. 8–11. — P. 1011–1035. — DOI:https://doi.org/10.1016/s1364-6826(02)00054-8. DOI: https://doi.org/10.1016/j.jastp.2019.02.005; EDN: https://elibrary.ru/PPBZAA
40. Pancheva D., Mukhtarov P., Hall C., et al. Climatology of the main (24-h and 12-h) tides observed by meteor radars at Svalbard and Tromsø: Comparison with the models CMAM-DAS and WACCM-X // Journal of Atmospheric and Solar-Terrestrial Physics. — 2020. — Vol. 207. — P. 105339. — DOI:https://doi.org/10.1016/j.jastp.2020.105339. DOI: https://doi.org/10.1038/srep24174; EDN: https://elibrary.ru/WSRUGB
41. Pedatella N. M., Forbes J. M. Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides // Geophysical Research Letters. — 2010. — Vol. 37, no. 11. — DOI:https://doi.org/10.1029/2010gl043560. DOI: https://doi.org/10.1016/S1364-6826(02)00054-8; EDN: https://elibrary.ru/KSNULW
42. Pedatella N. M., Liu H.-L. The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere // Journal of Geophysical Research: Space Physics. — 2013. — Vol. 118, no. 8. — P. 5333–5347. — DOI:https://doi.org/10.1002/jgra.50492. DOI: https://doi.org/10.1016/j.jastp.2020.105339; EDN: https://elibrary.ru/NNQAOT
43. Pedatella N. M., Richmond A. D., Maute A., et al. Impact of semidiurnal tidal variability during SSWs on the mean state of the ionosphere and thermosphere // Journal of Geophysical Research: Space Physics. — 2016. — Vol. 121, no. 8. — P. 8077–8088. — DOI:https://doi.org/10.1002/2016ja022910.
44. Pogoreltsev A. I., Vlasov A. A., Fröhlich K., et al. Planetary waves in coupling the lower and upper atmosphere // Journal of Atmospheric and Solar-Terrestrial Physics. — 2007. — Vol. 69, no. 17/18. — P. 2083–2101. — DOI:https://doi.org/10.1016/j.jastp.2007.05.014.
45. Salminen A., Asikainen T., Maliniemi V., et al. Dependence of Sudden Stratospheric Warmings on Internal and External Drivers // Geophysical Research Letters. — 2020. — Vol. 47, no. 5. — DOI:https://doi.org/10.1029/2019GL086444. DOI: https://doi.org/10.1002/2016JA022910; EDN: https://elibrary.ru/YEXJCI
46. Siddiqui T. A., Chau J. L., Stolle C., et al. Migrating solar diurnal tidal variability during Northern and Southern Hemisphere Sudden Stratospheric Warmings // Earth, Planets and Space. — 2022. — Vol. 74, no. 1. — DOI:https://doi.org/10.1186/s40623-022-01661-y. DOI: https://doi.org/10.1016/j.jastp.2007.05.014; EDN: https://elibrary.ru/LKOFTF
47. Smith A. K. Global Dynamics of the MLT // Surveys in Geophysics. — 2012. — Vol. 33, no. 6. — P. 1177–1230. — DOI:https://doi.org/10.1007/s10712-012-9196-9. DOI: https://doi.org/10.1029/2019GL086444; EDN: https://elibrary.ru/OVBDON
48. Sridharan S., Sathishkumar S., Gurubaran S. Variabilities of mesospheric tides during sudden stratospheric warming events of 2006 and 2009 and their relationship with ozone and water vapour // Journal of Atmospheric and Solar-Terrestrial Physics. — 2012. — Vol. 78/79. — P. 108–115. — DOI:https://doi.org/10.1016/j.jastp.2011.03.013. DOI: https://doi.org/10.1186/s40623-022-01661-y; EDN: https://elibrary.ru/VPCBLP
49. Sun L., Robinson W. A. Downward influence of stratospheric final warming events in an idealized model // Geophysical Research Letters. — 2009. — Vol. 36, no. 3. — DOI:https://doi.org/10.1029/2008gl036624. DOI: https://doi.org/10.1007/s10712-012-9196-9; EDN: https://elibrary.ru/RGYEFN
50. Suvorova E. V., Pogoreltsev A. I. Modeling of nonmigrating tides in the middle atmosphere // Geomagnetism and Aeronomy. — 2011. — Vol. 51, no. 1. — P. 105–115. — DOI:https://doi.org/10.1134/s0016793210061039. DOI: https://doi.org/10.1016/j.jastp.2011.03.013; EDN: https://elibrary.ru/PRQUFV
51. Trenberth K. E. The Definition of El Niño // Bulletin of the American Meteorological Society. — 1997. — Vol. 78, no. 12. — P. 2771–2777. — DOI:https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.
52. Vargin P. N., Kolennikova M. A., Kostrykin S. V., et al. Impact of Sea Surface Temperature Anomalies in the Equatorial and North Pacific on the Arctic Stratosphere According to the INMCM5 Climate Model Simulations // Russian Meteorology and Hydrology. — 2021. — Vol. 46, no. 1. — P. 1–9. — DOI:https://doi.org/10.3103/s1068373921010015.
53. Wallace J. M., Panetta R. L., Estberg J. Representation of the Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space // Journal of the Atmospheric Sciences. — 1993. — Vol. 50, no. 12. — P. 1751–1762. — DOI:https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.
54. Wang C., Deser C., Yu J.-Y., et al. El Niño and Southern Oscillation (ENSO): A Review // Coral Reefs of the Eastern Tropical Pacific. — Springer Netherlands, 2016. — P. 85–106. — DOI:https://doi.org/10.1007/978-94-017-7499-4_4.
55. Wolter K., Timlin M. S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext) // International Journal of Climatology. — 2011. — Vol. 31, no. 7. — P. 1074–1087. — DOI:https://doi.org/10.1002/joc.2336.
56. Xu J., Smith A. K., Jiang G., et al. Features of the seasonal variation of the semidiurnal, terdiurnal and 6-h components of ozone heating evaluated from Aura/MLS observations // Annales Geophysicae. — 2012. — Vol. 30, no. 2. — P. 259–281. — DOI:https://doi.org/10.5194/angeo-30-259-2012.