с 01.01.2010 по настоящее время
Российский государственный гидрометеорологический университет
Центральная Аэрологическая обсерватория
Россия
4Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова РАН (ИЗМИРАН)
Российский государственный гидрометеорологический университет
Россия
Россия
УДК 551.5 Метеорология. Климатология
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
С целью изучения эволюции атмосферных приливов были проведены модельные расчеты общей атмосферной циркуляции с помощью 3-мерной нелинейной механистической модели МСВА. В качестве естественных тропических осцилляций рассматриваются: квазидвухлетнее колебание экваториального зонального ветра (КДК) в стратосфере и Эль-Ниньо Южное колебание (ЭНЮК). Изменения амплитуд приливов анализируются на трех 10-дневных интервалах времени перед, во время и после внезапного стратосферного потепления (ВСП). Рассматриваются композитные ВСП, состоящие из 6 событий, найденных в ансамблях расчетов, для каждой комбинации фаз КДК/ЭНЮК. Исследуются мигрирующие и немигрирующие суточные и полусуточные приливы с зональными волновыми числами, 1 и 2. Численные эксперименты, в частности, показали, что структура приливов восприимчива к воздействию ВСП, при этом во время ВСП амплитуды приливов при разных комбинациях КДК – ЭНЮК меняются по-разному. Например, при Эль-Ниньо и восточной фазе КДК заметно ослабление суточного мигрирующего прилива во время ВСП, а при Ла-Нинья и восточной фазе КДК, наоборот, амплитуда суточного прилива усиливается во время события, а после ВСП – ослабляется. Анализ численных экспериментов подтверждает существующие представления о существенной изменчивости приливов во время ВСП и демонстрирует важнейший источник этой изменчивости, связанный с комбинациями динамического воздействия КДК – ЭНЮК.
динамика атмосферы, атмосферные приливы, тропические осцилляции, внезапное стратосферное потепление
1. Варгин П. Н., Коленникова М. А., Кострыкин С. В. и др. Влияние аномалий температуры поверхности экваториальной и северной части Тихого океана на стратосферу Арктики по расчетам климатической модели ИВМ РАН // Метеорология и гидрология. — 2021. — № 1. — С. 5—16. — DOI:https://doi.org/10.52002/0130-2906-2021-1-5-16. EDN: https://elibrary.ru/OGIIYX
2. Гаврилов Н. М., Ефимов М. М. Автоматизированное определение дат внезапных стратосферных потеплений // Оптика атмосферы и океана. Физика атмосферы: Материалы XXVII Международного симпозиума. Конференция E. Физика средней и верхней атмосферы. — Томск : ИОА СО РАН, 2021. — Е26—Е29.
3. Ефимов М. М., Гаврилов Н. М. Верификация метода максимумов скорости изменения атмосферных параметров для определения характеристик внезапных стратосферных потеплений // Оптика атмосферы и океана. Физика атмосферы: Материалы XXX Международного симпозиума. Конференция E. Физика средней и верхней атмосферы. — Томск : ИОА СО РАН, 2024. — DOI:https://doi.org/10.56820/OAO30E1.
4. Коленникова М. П., Варгин П. Н., Гущина Д. Ю. Взаимосвязи между индексами Эль-Ниньо и основными характеристиками полярной стратосферы по данным моделей CMIP5 и реанализа // Метеорология и гидрология. — 2021. — № 6. — С. 5—23. — DOI:https://doi.org/10.52002/0130-2906-2021-6-5-23. EDN: https://elibrary.ru/QSERWP
5. Суворова Е. В., Погорельцев А. И. Моделирование немигрирующих приливов в средней атмосфере // Геомагнетизм и аэрономия. — 2011. — Т. 51, № 1. — С. 107—118. EDN: https://elibrary.ru/NDJAJZ
6. Angelats i Coll M., Forbes J. M. Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 nonmigrating semidiurnal tides // Journal of Geophysical Research: Space Physics. — 2002. — Vol. 107, A8. — DOI:https://doi.org/10.1029/2001ja900179.
7. Baldwin M. P., Dameris M., Shepherd T. G. How will the stratosphere affect climate change? // Science. — 2007. — Vol. 316, no. 5831. — P. 1576–1577. — DOI:https://doi.org/10.1126/science.1144303.
8. Baldwin M. P., Gray L. J., Dunkerton T. J., et al. The quasi-biennial oscillation // Reviews of Geophysics. — 2001. — Vol. 39, no. 2. — P. 179–229. — DOI:https://doi.org/10.1029/1999rg000073.
9. Butler A. H. SSWC: Sudden Stratospheric Warming Compendium data set. Table of major mid-winter SSWs in reanalyses products. — 2023. — (accessed: 20.03.2024) ; (in English). https://csl.noaa.gov/groups/csl8/sswcompendium/majorevents.html.
10. Efimov M. M., Gavrilov N. M. Determination of sudden stratospheric warming dates and their classification according to the JRA-55 reanalysis data // 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. — SPIE, 2023. — P. 172. — DOI:https://doi.org/10.1117/12.2690514.
11. Ermakova T. S., Aniskina O. G., Statnaia I. A., et al. Simulation of the ENSO influence on the extra-tropical middle atmosphere // Earth, Planets and Space. — 2019. — Vol. 71, no. 8. — DOI:https://doi.org/10.1186/s40623-019-0987-9. EDN: https://elibrary.ru/WUAKEB
12. Ermakova T. S., Koval A., Didenko K., et al. Influence of Natural Tropical Oscillations on Ozone Content and Meridional Circulation in the Boreal Winter Stratosphere // Atmosphere. — 2024. — Vol. 15, no. 6. — P. 717. — DOI:https://doi.org/10.3390/atmos15060717. EDN: https://elibrary.ru/NLLSYV
13. Ermakova T. S., Koval A. V., Smyshlyaev S. P., et al. Manifestations of Different El Niño Types in the Dynamics of the Extratropical Stratosphere // Atmosphere. — 2022. — Vol. 13, no. 12. — P. 2111. — DOI:https://doi.org/10.3390/atmos13122111. EDN: https://elibrary.ru/SVUBQE
14. Forbes J. M. Atmospheric tides: 1. Model description and results for the solar diurnal component // Journal of Geophysical Research: Space Physics. — 1982. — Vol. 87, A7. — P. 5222–5240. — DOI:https://doi.org/10.1029/ja087ia07p05222.
15. Fuller-Rowell T., Wu F., Akmaev R., et al. A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics // Journal of Geophysical Research: Space Physics. — 2010. — Vol. 115, A10. — DOI:https://doi.org/10.1029/2010ja015524.
16. Gan Q., Du J., Fomichev V. I., et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations // Journal of Geophysical Research: Space Physics. — 2017. — Vol. 122, no. 4. — P. 4801–4818. — DOI:https://doi.org/10.1002/2016JA023564. EDN: https://elibrary.ru/AMSGIT
17. Garfinkel C. I., Hartmann D. L. Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere // Journal of Geophysical Research: Atmospheres. — 2007. — Vol. 112, no. D19. — DOI:https://doi.org/10.1029/2007jd008481. EDN: https://elibrary.ru/LWPMWR
18. Gavrilov N. M., Koval A. V., Pogoreltsev A. I., et al. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios // Advances in Space Research. — 2018. — Vol. 61, no. 7. — P. 1819–1836. — DOI:https://doi.org/10.1016/j.asr.2017.08.022. EDN: https://elibrary.ru/XXVXJR
19. Geißler Ch., Jacobi Ch., Lilienthal F. Forcing mechanisms of the migrating quarterdiurnal tide // Annales Geophysicae. — 2020. — Vol. 38, no. 2. — P. 527–544. — DOI:https://doi.org/10.5194/angeo-38-527-2020. EDN: https://elibrary.ru/HJRRQW
20. Hagan M. E., Forbes J. M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release // Journal of Geophysical Research: Atmospheres. — 2002. — Vol. 107, no. D24. — DOI:https://doi.org/10.1029/2001jd001236.
21. Hagan M. E., Forbes J. M., Vial F. On modeling migrating solar tides // Geophysical Research Letters. — 1995. — Vol. 22, no. 8. — P. 893–896. — DOI:https://doi.org/10.1029/95gl00783.
22. He M., Forbes J. M., Chau J. L., et al. High-Order Solar Migrating Tides Quench at SSW Onsets // Geophysical Research Letters. — 2020. — Vol. 47, no. 6. — DOI:https://doi.org/10.1029/2019gl086778. EDN: https://elibrary.ru/VKNVRS
23. Hibbins R. E., Espy P. J., Orsolini Y. J., et al. SuperDARN Observations of Semidiurnal Tidal Variability in the MLT and the Response to Sudden Stratospheric Warming Events // Journal of Geophysical Research: Atmospheres. — 2019. — Vol. 124, no. 9. — P. 4862–4872. — DOI:https://doi.org/10.1029/2018jd030157. EDN: https://elibrary.ru/WQNZYD
24. Hitchman M. H., Yoden S., Haynes P. H., et al. An Observational History of the Direct Influence of the Stratospheric Quasibiennial Oscillation on the Tropical and Subtropical Upper Troposphere and Lower Stratosphere // Journal of the Meteorological Society of Japan. Ser. II. — 2021. — Vol. 99, no. 2. — P. 239–267. — DOI:https://doi.org/10.2151/jmsj.2021-012. EDN: https://elibrary.ru/QWPSPB
25. Holton J. R., Tan H. C. The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb // Journal of the Atmospheric Sciences. — 1980. — Vol. 37, no. 10. — P. 2200–2208. — DOI:https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2
26. Hong H.-J., Reichler T. Local and remote response of ozone to Arctic stratospheric circulation extremes // Atmospheric Chemistry and Physics. — 2021. — Vol. 21, no. 2. — P. 1159–1171. — DOI:https://doi.org/10.5194/acp-21-1159-2021. EDN: https://elibrary.ru/RZLLXW
27. Jacobi C., Portnyagin Y., Solovjova T., et al. Climatology of the semidiurnal tide at 52-56∘N from ground-based radar wind measurements 1985-1995 // Journal of Atmospheric and Solar-Terrestrial Physics. — 1999. — Vol. 61, no. 13. — P. 975–991. — DOI:https://doi.org/10.1016/s1364-6826(99)00065-6. EDN: https://elibrary.ru/LFGEHB
28. Jin H., Miyoshi Y., Pancheva D., et al. Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations // Journal of Geophysical Research: Space Physics. — 2012. — Vol. 117, A10. — DOI:https://doi.org/10.1029/2012ja017650. EDN: https://elibrary.ru/WKWUDP
29. Koval A. V., Gavrilov N. M., Kandieva K. K., et al. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Scientific Reports. — 2022a. — Vol. 12, no. 1. — DOI:https://doi.org/10.1038/s41598-022-26311-x. EDN: https://elibrary.ru/JZUBKU
30. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., et al. Reactions of the Middle Atmosphere Circulation and Stationary Planetary Waves on the Solar Activity Effects in the Thermosphere // Journal of Geophysical Research: Space Physics. — 2019. — Vol. 124, no. 12. — P. 10645–10658. — DOI:https://doi.org/10.1029/2019ja027392. EDN: https://elibrary.ru/YRJBJB
31. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., et al. Dynamical Impacts of Stratospheric QBO on the Global Circulation up to the Lower Thermosphere // Journal of Geophysical Research: Atmospheres. — 2022b. — Vol. 127, no. 4. — DOI:https://doi.org/10.1029/2021jd036095. EDN: https://elibrary.ru/TXUVCI
32. Kumar V., Yoden S., Hitchman M. H. QBO and ENSO Effects on the Mean Meridional Circulation, Polar Vortex, Subtropical Westerly Jets, and Wave Patterns During Boreal Winter // Journal of Geophysical Research: Atmospheres. — 2022. — Vol. 127, no. 15. — DOI:https://doi.org/10.1029/2022jd036691. EDN: https://elibrary.ru/HEGFAS
33. Laštovička J. Forcing of the ionosphere by waves from below // Journal of Atmospheric and Solar-Terrestrial Physics. — 2006. — Vol. 68, no. 3–5. — P. 479–497. — DOI:https://doi.org/10.1016/j.jastp.2005.01.018. EDN: https://elibrary.ru/MEUCIN
34. Lilienthal F., Jacobi C. Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation // Annales Geophysicae. — 2019. — Vol. 37, no. 5. — P. 943–953. — DOI:https://doi.org/10.5194/angeo-37-943-2019. EDN: https://elibrary.ru/EGGVZH
35. Lilienthal F., Jacobi C., Geißler C. Forcing mechanisms of the terdiurnal tide // Atmospheric Chemistry and Physics. — 2018. — Vol. 18, no. 21. — P. 15725–15742. — DOI:https://doi.org/10.5194/acp-18-15725-2018. EDN: https://elibrary.ru/UKCEKI
36. Limpasuvan V., Orsolini Y. J., Chandran A., et al. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause // Journal of Geophysical Research: Atmospheres. — 2016. — Vol. 121, no. 9. — P. 4518–4537. — DOI:https://doi.org/10.1002/2015jd024401.
37. Ma Xuan, Wang Lei, Smith Doug, et al. ENSO and QBO modulation of the relationship between Arctic sea ice loss and Eurasian winter climate // Environmental Research Letters. — 2022. — Vol. 17, no. 12. — DOI:https://doi.org/10.1088/1748-9326/aca4e9.
38. Manson A., Meek C., Teitelbaum H., et al. Climatologies of semi-diurnal and diurnal tides in the middle atmosphere (70-110 km) at middle latitudes (40-55∘ ) // Journal of Atmospheric and Terrestrial Physics. — 1989. — Vol. 51, no. 7/8. — P. 579–593. — DOI:https://doi.org/10.1016/0021-9169(89)90056-1.
39. Medvedeva I. V., Semenov A. I., Pogoreltsev A. I., et al. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations // Journal of Atmospheric and Solar-Terrestrial Physics. — 2019. — Vol. 187. — P. 22–32. — DOI:https://doi.org/10.1016/j.jastp.2019.02.005. EDN: https://elibrary.ru/PPBZAA
40. Nath D., Chen W., Zelin C., et al. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection // Scientific Reports. — 2016. — Vol. 6, no. 1. — DOI:https://doi.org/10.1038/srep24174. EDN: https://elibrary.ru/WSRUGB
41. Pancheva D., Mitchell N., Hagan M., et al. Global-scale tidal structure in the mesosphere and lower thermosphere during the PSMOS campaign of June-August 1999 and comparisons with the global-scale wave model // Journal of Atmospheric and Solar-Terrestrial Physics. — 2002. — Vol. 64, no. 8–11. — P. 1011–1035. — DOI:https://doi.org/10.1016/s1364-6826(02)00054-8. EDN: https://elibrary.ru/KSNULW
42. Pancheva D., Mukhtarov P., Hall C., et al. Climatology of the main (24-h and 12-h) tides observed by meteor radars at Svalbard and Tromsø: Comparison with the models CMAM-DAS and WACCM-X // Journal of Atmospheric and Solar-Terrestrial Physics. — 2020. — Vol. 207. — P. 105339. — DOI:https://doi.org/10.1016/j.jastp.2020.105339. EDN: https://elibrary.ru/NNQAOT
43. Pedatella N. M., Forbes J. M. Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides // Geophysical Research Letters. — 2010. — Vol. 37, no. 11. — DOI:https://doi.org/10.1029/2010gl043560.
44. Pedatella N. M., Liu H.-L. The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere // Journal of Geophysical Research: Space Physics. — 2013. — Vol. 118, no. 8. — P. 5333–5347. — DOI:https://doi.org/10.1002/jgra.50492.
45. Pedatella N. M., Richmond A. D., Maute A., et al. Impact of semidiurnal tidal variability during SSWs on the mean state of the ionosphere and thermosphere // Journal of Geophysical Research: Space Physics. — 2016. — Vol. 121, no. 8. — P. 8077–8088. — DOI:https://doi.org/10.1002/2016ja022910. EDN: https://elibrary.ru/YEXJCI
46. Pogoreltsev A. I., Vlasov A. A., Fröhlich K., et al. Planetary waves in coupling the lower and upper atmosphere // Journal of Atmospheric and Solar-Terrestrial Physics. — 2007. — Vol. 69, no. 17/18. — P. 2083–2101. — DOI:https://doi.org/10.1016/j.jastp.2007.05.014. EDN: https://elibrary.ru/LKOFTF
47. Salminen A., Asikainen T., Maliniemi V., et al. Dependence of Sudden Stratospheric Warmings on Internal and External Drivers // Geophysical Research Letters. — 2020. — Vol. 47, no. 5. — DOI:https://doi.org/10.1029/2019GL086444. EDN: https://elibrary.ru/OVBDON
48. Siddiqui T. A., Chau J. L., Stolle C., et al. Migrating solar diurnal tidal variability during Northern and Southern Hemisphere Sudden Stratospheric Warmings // Earth, Planets and Space. — 2022. — Vol. 74, no. 1. — DOI:https://doi.org/10.1186/s40623-022-01661-y. EDN: https://elibrary.ru/VPCBLP
49. Smith A. K. Global Dynamics of the MLT // Surveys in Geophysics. — 2012. — Vol. 33, no. 6. — P. 1177–1230. — DOI:https://doi.org/10.1007/s10712-012-9196-9. EDN: https://elibrary.ru/RGYEFN
50. Sridharan S., Sathishkumar S., Gurubaran S. Variabilities of mesospheric tides during sudden stratospheric warming events of 2006 and 2009 and their relationship with ozone and water vapour // Journal of Atmospheric and Solar-Terrestrial Physics. — 2012. — Vol. 78/79. — P. 108–115. — DOI:https://doi.org/10.1016/j.jastp.2011.03.013. EDN: https://elibrary.ru/PRQUFV
51. Sun L., Robinson W. A. Downward influence of stratospheric final warming events in an idealized model // Geophysical Research Letters. — 2009. — Vol. 36, no. 3. — DOI:https://doi.org/10.1029/2008gl036624.
52. Trenberth K. E. The Definition of El Niño // Bulletin of the American Meteorological Society. — 1997. — Vol. 78, no. 12. — P. 2771–2777. — DOI:https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.
53. Wallace J. M., Panetta R. L., Estberg J. Representation of the Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space // Journal of the Atmospheric Sciences. — 1993. — Vol. 50, no. 12. — P. 1751–1762. — DOI:https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.
54. Wang C., Deser C., Yu J.-Y., et al. El Niño and Southern Oscillation (ENSO): A Review // Coral Reefs of the Eastern Tropical Pacific. — Springer Netherlands, 2016. — P. 85–106. — DOI:https://doi.org/10.1007/978-94-017-7499-4_4.
55. Wolter K., Timlin M. S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext) // International Journal of Climatology. — 2011. — Vol. 31, no. 7. — P. 1074–1087. — DOI:https://doi.org/10.1002/joc.2336.
56. Xu J., Smith A. K., Jiang G., et al. Features of the seasonal variation of the semidiurnal, terdiurnal and 6-h components of ozone heating evaluated from Aura/MLS observations // Annales Geophysicae. — 2012. — Vol. 30, no. 2. — P. 259–281. — DOI:https://doi.org/10.5194/angeo-30-259-2012.