from 01.01.2018 until now
Russian Federation
Sevastopol State University
VAC 2.8.3 Горнопромышленная и нефтегазопромысловая геология, геофизика, маркшейдерское дело и геометрия недр
VAC 1.6 Науки о Земле и окружающей среде
UDK 55 Геология. Геологические и геофизические науки
UDK 550.8.056 Определение физических параметров по геофизическим данным
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 21.00.00 Прикладная геология, горное дело, нефтегазовое дело и геодезия
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 632 Геофизика
TBK 63 Науки о Земле. Экология
BISAC TEC TECHNOLOGY & ENGINEERING
BISAC NAT NATURE
BISAC SCI SCIENCE
The article presents a methodology for conducting 3D seismic tomography of rock massifs. This technique has been developed for the identification and localisation of zones of development of dangerous geological processes formed within the rock massif of a coastal cliff. An example of the application of the technique is provided by the results of seismic tomography, which were used to study the state of a coastal cliff in Crimea that is subject to abrasion. The seismic tomographic inversion process has been utilised to generate maps depicting the distribution of 𝑃 and 𝑆 velocity values of seismic waves within the rock massif at varying depths. Furthermore, the dynamic moduli of elasticity, which are indicative of the physical and mechanical properties of the rocks constituting the cliff, have been calculated. The maps that have been generated by the seismic tomographic inversion process reflect the spatial distribution of these parameters, and the maps also localise the zones that have been weakened, presumably as a consequence of the formation and development of negative geological processes that are dangerous for the cliff's stability.
Seismic tomography, seismic sounding, 3D inverse modeling, stress-strain properties, competence, cliff, Crimea coast, landslide, tension joint
1. Aleksandrov P. N., Krizsky V. N. Direct and Inverse Problems of Seismic Exploration of Anisotropic and Dispersive Elastic Media on Volume Integral Equations // Mathematical Models and Computer Simulations. — 2023. — Vol. 15, no. 6. — P. 976–986. — DOI:https://doi.org/10.1134/S2070048223060042. EDN: https://elibrary.ru/XFESNZ
2. Alekseev A. B., Esina E. N., Zoteyev O. V., et al. Methodological guidelines for determining the parameters of quarry sides and benches, open pits and dump slopes. — Moscow : IPKON RAS, 2022a. — 80 p. — (In Russian).
3. Alekseev A. B., Esina E. N., Zoteyev O. V., et al. Methodological guidelines for studying rock mass to ensure the stability of quarry sides and benches, open pits and dump slopes. — Moscow : IPKON RAS, 2022b. — 102 p. — (In Russian).
4. Aleshkin M., Ashmarina J., Goncharov E., et al. Approbation of Crosshole Seismic Imaging Technology in a Modification of Extended Tomography to Search for Kimberlite Bodies in the Yakutsk Diamondiferous Province // Engineering and Mining Geophysics 2021. — European Association of Geoscientists & Engineers, 2021. — P. 1–11. — DOI:https://doi.org/10.3997/2214-4609.202152143. — (In Russian). DOI: https://doi.org/10.31897/PMI.2021.1.1; EDN: https://elibrary.ru/BWPHWW
5. Bayo A. R., Okiongbo K. S., Sorronadi-Ononiwu G. C. Determination of elastic moduli and bearing capacity of sediments using geophysical and cone penetration test techniques in Yenagoa, Southern Nigeria // NRIAG Journal of Astronomy and Geophysics. — 2021. — Vol. 10, no. 1. — P. 202–217. — DOI:https://doi.org/10.1080/20909977.2021.1904550. DOI: https://doi.org/10.17580/or.2021.05.01; EDN: https://elibrary.ru/DYQNBT
6. Beyene A., Tesema N., Fufa F., et al. Geophysical and numerical stability analysis of landslide incident // Heliyon. — 2023. — Vol. 9, no. 3. — e13852. — DOI:https://doi.org/10.1016/j.heliyon.2023.e13852. EDN: https://elibrary.ru/WQNJET
7. Blokhin D., Ivanov P., Dudchenko O. Experimental study of thermomechanical effects in water-saturated limestones during their deformation // Journal of Mining Institute. — 2021. — Vol. 247. — P. 1–10. — DOI:https://doi.org/10.31897/PMI.2021.1.1. DOI: https://doi.org/10.31897/PMI.2022.86; EDN: https://elibrary.ru/YLFNMB
8. Bolobov V. I., Plashchinsky V. A., Borisov S. V., et al. On the ratio of rock fracture parameters in static and dynamic conditions // Obogashchenie Rud. — 2021. — P. 3–9. — DOI:https://doi.org/10.17580/or.2021.05.01. — (In Russian).
9. Bolshunov A. V., Vasilev D. A., Dmitriev A. N., et al. Results of complex experimental studies at Vostok station in Antarctica // Journal of Mining Institute. — 2023. — Vol. 263. — P. 724–741. — EDN: https://elibrary.ru/WQNJET. DOI: https://doi.org/10.31897/PMI.2023.9; EDN: https://elibrary.ru/PZUUER
10. CP 11-105-97. Code of practice. Engineering geological site investigations for construction. — Moscow : FSUE "PNIIIS" of the State Construction Committee of Russia, 2004. — (In Russian). EDN: https://elibrary.ru/OSYEHQ
11. Daniliev S., Danilieva N., Mulev S., et al. Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings // Minerals. — 2022. — Vol. 12, no. 5. — P. 609. — DOI:https://doi.org/10.3390/min12050609. DOI: https://doi.org/10.15372/FPVGN2020070110; EDN: https://elibrary.ru/KZVBGZ
12. Dashko R. E., Karpenko A. G. Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability // Journal of Mining Institute. — 2023. — Vol. 263. — P. 757–773. DOI: https://doi.org/10.31857/S0002333720040109; EDN: https://elibrary.ru/JFPXIG
13. Dede M., Susiati H., Widiawaty M. A., et al. Multivariate analysis and modeling of shoreline changes using geospatial data // Geocarto International. — 2023. — Vol. 38, no. 1. — DOI:https://doi.org/10.1080/10106049.2022.2159070. DOI: https://doi.org/10.25018/0236_1493_2021_51_0_131; EDN: https://elibrary.ru/PRYLIG
14. Eremenko A. A., Filippov V. N. Determination of rational drilling and blasting parameters to ensure stability of edges of open-pit mines in the Bystrinsky deposit // Fundamental’nyye i prikladnyye voprosy gornykh nauk. — 2020. — Vol. 7, no. 1. — P. 64–73. — DOI:https://doi.org/10.15372/fpvgn2020070110. — (In Russian). EDN: https://elibrary.ru/GIZJOO
15. Glazunov V., Burlutsky S., Shuvalova R., et al. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data // Journal of Mining Institute. — 2022. — Vol. 257. — P. 771–782. — DOI:https://doi.org/10.31897/PMI.2022.86. DOI: https://doi.org/10.25018/0236_1493_2022_121_0_155; EDN: https://elibrary.ru/CIEOYQ
16. Goryainov N. N., Bogolyubov A. N., Varlamov N. M., et al. Study of landslides by geophysical methods. — Moscow : Nedra, 1987. — P. 155. — (In Russian). DOI: https://doi.org/10.30713/2413-5011-2019-1-29-36; EDN: https://elibrary.ru/YTNXJB
17. Gospodarikov A., Revin I., Morozov K. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit // Journal of Mining Institute. — 2023. — Vol. 262. — P. 571–580. — DOI:https://doi.org/10.31897/PMI.2023.9. DOI: https://doi.org/10.25206/1813-8225-2022-184-112-117; EDN: https://elibrary.ru/ZVUZIL
18. Hadi F., Nygaard R. Estimating unconfined compressive strength and Young’s modulus of carbonate rocks from petrophysical properties // Petroleum Science and Technology. — 2022. — Vol. 41, no. 13. — P. 1367–1389. — DOI:https://doi.org/10.1080/10916466.2022.2092500. DOI: https://doi.org/10.25018/0236-1493-2020-8-0-5-39; EDN: https://elibrary.ru/GGLHJX
19. Hussain Y., Schlögel R., Innocenti A., et al. Review on the Geophysical and UAV-Based Methods Applied to Landslides // Remote Sensing. — 2022. — Vol. 14, no. 18. — P. 4564. — DOI:https://doi.org/10.3390/rs14184564. DOI: https://doi.org/10.17580/gzh.2021.01.02; EDN: https://elibrary.ru/WYHWLX
20. Imani P., El-Raouf A. A., Tian G. Landslide Investigation Using Seismic Refraction Tomography Method: A Review // Annals of Geophysics. — 2021. — Vol. 64, Vol. 64 (2021). — DOI:https://doi.org/10.4401/ag-8633. DOI: https://doi.org/10.30686/1609-9192-2023-5S-87-92; EDN: https://elibrary.ru/KWOGXA
21. Isakova E. P., Daniliev S. M., Mingaleva T. A. GPR for mapping fractures for the extraction of facing granite from a quarry: A case study from Republic of Karelia // E3S Web of Conferences. — 2021. — Vol. 266. — P. 07007. — DOI:https://doi.org/10.1051/e3sconf/202126607007. EDN: https://elibrary.ru/TWQODP
22. Kabeta W. F., Tamiru M., Tsige D., et al. An integrated geotechnical and geophysical investigation of landslide in Chira town, Ethiopia // Heliyon. — 2023. — Vol. 9, no. 7. — e17620. — DOI:https://doi.org/10.1016/j.heliyon.2023.e17620. DOI: https://doi.org/10.7242/echo.2022.1.18; EDN: https://elibrary.ru/AMFXMI
23. Kayukova E. P., Dorofeev I. A., Shatunov I. V. Deposits of the lower cretaceous in the Crimean foothills and their role in the formation of fresh water Crimean peninsula // Geology, Geoecology, Evolutionary Geography: Collective Monograph. Volume XIX. — Saint Petersburg : A. I. Herzen Russian State Pedagogical University, 2020. — P. 246–249. — (In Russian).
24. Kozyrev A. A., Kagan M. M., Chernobrov D. S., et al. Microseismic monitoring system of the pit’s board array based on seismic sensors in deep boreholes beyond the final pit contour // Mining informational and analytical bulletin. — 2022. — No. 12–1. — P. 155–165. — DOI:https://doi.org/10.25018/0236_1493_2022_121_0_155. — (In Russian). DOI: https://doi.org/10.20403/2078-0575-2021-3-40-47; EDN: https://elibrary.ru/OVMFDI
25. Lensky V. A., Zhuzhel A. S., Sharafutdinov T. R. Modern condition of a well seismic survey (WSS) in Russia // Geology, Geophysics and Development of Oil and Gas Fields. — 2019. — No. 1. — P. 29–36. — DOI:https://doi.org/10.30713/2413-5011-2019-1-29-36. — (In Russian). DOI: https://doi.org/10.17580/gzh.2023.05.01; EDN: https://elibrary.ru/JBMSCI
26. Madi P. Sh., Alkina A. D., Yurchenko A. V., et al. Fiber-optic system for monitoring stability of quarry slopes // Omsk Scientific Bulletin. — 2022. — 4(184). — P. 112–117. — DOI:https://doi.org/10.25206/1813-8225-2022-184-112-117. — (In Russian). DOI: https://doi.org/10.1134/s2070048223060042; EDN: https://elibrary.ru/ARTQMR
27. Oparin V. N., Potapov V. P., Kiryaeva T. A., et al. Development of methods and means for integrated geo-information-based analysis of influence exerted by nonlinear deformation and wave processes induced by seismic forces on geomechanical behavior of pit walls and on gas-dynamic activity in coal mines in Kuzbass // Mining informational and analytical bulletin. — 2020. — No. 8. — P. 5–39. — DOI:https://doi.org/10.25018/0236-1493-2020-8-0-5-39. — (In Russian). DOI: https://doi.org/10.1080/20909977.2021.1904550; EDN: https://elibrary.ru/QIWANS
28. Razumov E. E., Prostov S. M., Rukavishnikov G. D., et al. Basic principles for building seismic monitoring systems in rockburst-hazardous coal seam mining // Gornyi Zhurnal. — 2021. — P. 8–12. — DOI:https://doi.org/10.17580/gzh.2021.01.02. — (In Russian). DOI: https://doi.org/10.1016/j.heliyon.2023.e13852; EDN: https://elibrary.ru/JDSHYE
29. Rybin V. V., Kalashnik A. I., Konstantinov K. N., et al. Results on detection of open-pit wall destruction parameters by complex of geophysical methods // Mining informational and analytical bulletin. — 2015. — No. 4. — P. 113–118. — (In Russian). DOI: https://doi.org/10.3390/min12050609; EDN: https://elibrary.ru/DUOUDO
30. Rybin V. V., Kalashnik A. I., Konstantinov K. N., et al. A comprehensive analysis of results obtained in monitoring pit bench stability using geophysical survey methods // Mining Industry Journal (Gornay Promishlennost). — 2023. — 5S/2023. — P. 87–92. — DOI:https://doi.org/10.30686/1609-9192-2023-5S-87-92. — (In Russian). DOI: https://doi.org/10.1080/10106049.2022.2159070; EDN: https://elibrary.ru/KUGNVB
31. Sanfirov I. A., Stepanov Yu. I. Complex interpretation of mine seismic and electrical exploration studies // Gornoe Ekho. — 2022. — No. 1. — P. 113–118. — (In Russian). DOI: https://doi.org/10.1080/10916466.2022.2092500; EDN: https://elibrary.ru/XTJBVG
32. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions // Gornyi Zhurnal. — 2023. — No. 5. — P. 5–10. — DOI:https://doi.org/10.17580/gzh.2023.05.01. — (In Russian). DOI: https://doi.org/10.3390/rs14184564; EDN: https://elibrary.ru/KDUCWS
33. Sysoev A. P. Substantiation of parameters of the 3D CDP field observation system // Geology and mineral resources of Siberia. — 2021. — No. 3. — P. 40–47. — DOI:https://doi.org/10.20403/2078-0575-2021-3-40-47. — (In Russian). DOI: https://doi.org/10.4401/AG-8633; EDN: https://elibrary.ru/WYCJVY
34. Zhukov V. S., Kuzmin Yu. O. The Influence of Fracturing of the Rocks and Model Materials on P-Wave Propagation Velocity: Experimental Studies // Izvestiya, Physics of the Solid Earth. — 2020. — Vol. 56, no. 4. — P. 470–480. — DOI:https://doi.org/10.1134/S1069351320040102. DOI: https://doi.org/10.1051/e3sconf/202126607007; EDN: https://elibrary.ru/FXJZKP
35. Zuev P. I., Grigoriev D. V., Vedernikov A. S. Geophysical survey of asbestos pit wall // Mining informational and analytical bulletin. — 2021. — No. 5–1. — P. 131–141. — DOI:https://doi.org/10.25018/0236_1493_2021_51_0_131. — (In Russian). DOI: https://doi.org/10.1016/j.heliyon.2023.e17620; EDN: https://elibrary.ru/PGBHAW