VAK Russia 1.6
UDC 551.46
UDC 551.46.09
UDC 551.463
UDC 551.468
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.25
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 2
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 6
Russian Trade and Bibliographic Classification 63
BISAC SCI052000 Earth Sciences / Oceanography
BISAC SCI SCIENCE
The paper proposes an alternative method of atmospheric correction using the OLCI satellite data for the Black Sea as an example. Currently, for remote sensing problems, the standard Gordon and Wang atmospheric correction algorithm is used in most cases (GW94). Unfortunately, its operation is often accompanied by the appearance of negative values of the spectral radiance coefficient of the sea (remote sensing reflectance) 𝑅rs(𝜆) in the shortwave region, which means a sufficient number of physically incorrect values and subsequent incorrect calculation of the concentration of chlorophyll-a and yellow matter. In this paper, a simple algorithm is proposed, built exclusively on analytical formulas, where two procedures of interpolation and extrapolation are conceptually implemented simultaneously, extrapolation - via two channels, interpolation based on the constancy of the color index ratio (CI = 𝑅rs(412)/𝑅rs(443) = 0.8). Using individual examples of OLCI scanner data, the performance GW94 of the new algorithm was tested for different states of the atmosphere and sea surface by comparing the results with in-kind measurements of the AERONET-OC platforms, with Level-2 data and with the operation of the regional method of additional correction. The new algorithm was tested under the following conditions: clear atmosphere (presence of background aerosol), presence of dust aerosol, cloud boundaries, presence of sun glare, coccolithophore bloom. When analyzing a number of Sentinel 3A/3B satellite images, it was found that the new simple algorithm was, on average, better than the standard one, which means that there is a prospect for its improvement. The advantage of this approach is its universality and the possibility of its implementation for other water areas, if there are patterns in the variability of the "blue" color index.
aerosol, atmospheric correction, remote sensing reflectance, sea optics, color index, interpolation, Black Sea
1. Ahmad Z., Franz B. A., McClain C. R., et al. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans // Applied Optics. — 2010. — Vol. 49, no. 29. — P. 5545. — DOI:https://doi.org/10.1364/ao.49.005545.
2. Antoine D., Morel A. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones // International Journal of Remote Sensing. — 1999. — Vol. 20, no. 9. — P. 1875–1916. — DOI:https://doi.org/10.1080/014311699212533.
3. Brockmann C., Doerffer R., Peters M., et al. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters // Living Planet Symposium, Proceedings of the conference held 9-13 May 2016. — Prague, Czech Republic, 2016.
4. Carder K. L., Chen F. R., Lee Z. P., et al. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures // Journal of Geophysical Research: Oceans. — 1999. — Vol. 104, no. C3. — P. 5403–5421. — DOI:https://doi.org/10.1029/1998jc900082.
5. Deschamps P. Y., Herman M., Tanre D. Modeling of the atmospheric effects and its application to the remote sensing of ocean color // Applied Optics. — 1983. — Vol. 22, no. 23. — P. 2068–2080. — DOI:https://doi.org/10.1364/ao.22.003751.
6. EUMETSAT. Phytoplankton bloom in the Black Sea. — 2022. — https://user.eumetsat.int/resources/case-studies/phytoplankton-bloom-in-the-black-sea.
7. European Space Agency. S3 OLCI Instrument. — 2025. — https://sentiwiki.copernicus.eu/web/s3-olci-instrument.
8. Feng L., Hou X., Li J., et al. Exploring the potential of Rayleigh-corrected reflectance in coastal and inland water applications: A simple aerosol correction method and its merits // ISPRS Journal of Photogrammetry and Remote Sensing. — 2018. — Vol. 146. — P. 52–64. — DOI:https://doi.org/10.1016/j.isprsjprs.2018.08.020.
9. Gordon H. R. Removal of atmospheric effects from satellite imagery of the ocean // Applied Optics. — 1978. — Vol. 17, no. 10. — P. 1631–1636. — DOI:https://doi.org/10.1364/AO.17.001631.
10. Gordon H. R. Evolution of Ocean Color Atmospheric Correction: 1970-2005 // Remote Sensing. — 2021. — Vol. 13, no. 24. — P. 5051. — DOI:https://doi.org/10.3390/rs13245051.
11. Gordon H. R., Brown O. B., Evans R. H., et al. A semianalytic radiance model of ocean color // Journal of Geophysical Research: Atmospheres. — 1988. — Vol. 93, no. D9. — P. 10909–10924. — DOI:https://doi.org/10.1029/jd093id09p10909.
12. Gordon H. R., Wang M. Surface-roughness considerations for atmospheric correction of ocean color sensors 1: The Rayleighscattering component // Applied Optics. — 1992. — Vol. 31, no. 21. — P. 4247. — DOI:https://doi.org/10.1364/ao.31.004247.
13. Gordon H. R., Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm // Applied Optics. — 1994. — Vol. 33, no. 3. — P. 443. — DOI:https://doi.org/10.1364/ao.33.000443.
14. Gould R. W., Arnone R. A., Martinolich P. M. Spectral dependence of the scattering coefficient in case 1 and case 2 waters // Applied Optics. — 1999. — Vol. 38, no. 12. — P. 2377. — DOI:https://doi.org/10.1364/ao.38.002377.
15. Hu C., Carder K. L., Muller-Karger F. E. Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters // Remote Sensing of Environment. — 2000. — Vol. 74, no. 2. — P. 195–206. — DOI:https://doi.org/10.1016/s0034-4257(00)00080-8.
16. Hu C., Lee Z., Franz B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference // Journal of Geophysical Research: Oceans. — 2012. — Vol. 117, no. C1. — DOI:https://doi.org/10.1029/2011jc007395.
17. Kalinskaya D. V., Papkova A. S. Why Is It Important to Consider Dust Aerosol in the Sevastopol and Black Sea Region during Remote Sensing Tasks? A Case Study // Remote Sensing. — 2022. — Vol. 14, no. 8. — P. 1890. — DOI:https://doi.org/10.3390/rs14081890.
18. Kopelevich O. V., Saling I. V., Vazyulya S. V., et al. Bio-optical characteristics of the seas, surrounding the western part of Russia, from data of the satellite ocean color scanners of 1998-2017. — Moscow : Vash Format, 2018. — P. 140. — EDN: https://elibrary.ru/YOSZPV ; (in Russian).
19. Kopelevich O. V., Vazyulya S. V., Saling I. V., et al. Electronic atlas «Biooptical characteristics of the Russian seas from satellite ocean color data of 1998-2014» // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2015. — Vol. 12, no. 6. — P. 99–110. — EDN: https://elibrary.ru/VBLWSB ; (in Russian).
20. Korchemkina E. N., Kalinskaya D. V. Algorithm of Additional Correction of Level 2 Remote Sensing Reflectance Data Using Modelling of the Optical Properties of the Black Sea Waters // Remote Sensing. — 2022. — Vol. 14, no. 4. — P. 831. — DOI:https://doi.org/10.3390/rs14040831.
21. Korchemkina E. N., Shibanov E. B., Li M. E. Improvement of the Atmospheric Correction Methodology for Remote Sensing of Coastal Waters of the Black Sea // Issledovaniye Zemli iz kosmosa. — 2009. — Vol. 6. — P. 24–30. — EDN: https://elibrary.ru/JVVGXQ ; (in Russian).
22. Kubryakov A. A., Mikaelyan A. S., Stanichny S. V. Summer and winter coccolithophore blooms in the Black Sea and their impact on production of dissolved organic matter from Bio-Argo data // Journal of Marine Systems. — 2019. — Vol. 199. — DOI:https://doi.org/10.1016/j.jmarsys.2019.103220.
23. Mélin F. Validation of ocean color remote sensing reflectance data: Analysis of results at European coastal sites // Remote Sensing of Environment. — 2022. — Vol. 280. — P. 113153. — DOI:https://doi.org/10.1016/j.rse.2022.113153.
24. Moulin C., Gordon H. R., Chomko R. M., et al. Atmospheric correction of ocean color imagery through thick layers of Saharan dust // Geophysical Research Letters. — 2001. — Vol. 28, no. 1. — P. 5–8. — DOI:https://doi.org/10.1029/2000gl011803.
25. Papkova A. S., Shybanov E. B., Kalinskaya D. V. The Effect of Dust Aerosol on Satellite Data from Different Color Scanners // Physical Oceanography. — 2024. — Vol. 31, no. 5. — P. 720–735. — EDN: https://elibrary.ru/AKOILG.
26. Parshikov S. V., Lee M. E. Remote sensing of optically active impurities using the short-wave spectrum // Automated systems for monitoring the state of the marine environment: collection of scientific papers. — Sevastopol : MGI NAS of Ukraine, 1992. — P. 65–78. — (In Russian).
27. Remote sensing of ocean colour in coastal, and other optically-complex, waters. Reports of the International Ocean-Colour Coordinating Group. No. 3 / ed. by S. Sathyendranath. — Dartmouth, Canada : IOCCG, 2000. — P. 140.
28. Ruddick K. G., Ovidio F., Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters // Applied Optics. — 2000. — Vol. 39, no. 6. — P. 897. — DOI:https://doi.org/10.1364/ao.39.000897.
29. Schollaert S. E., Yoder J. A., O’Reilly J. E., et al. Influence of dust and sulfate aerosols on ocean color spectra and chlorophyll a concentrations derived from SeaWiFS off the U.S. east coast // Journal of Geophysical Research: Oceans. — 2003. — Vol. 108, no. C6. — DOI:https://doi.org/10.1029/2000jc000555.
30. Shibanov E. B. Optical inhomogeneities of sea water and atmosphere over the sea: diss...doc. phys.-math. sciences. — Sevastopol : Federal Research Center "Marine Hydrophysical Institute of the Russian Academy of Sciences", 2020. — (In Russian).
31. Shibanov E. B., Afonin E. I. Physical model of radiation transfer in a plane-parallel atmosphere for remote sensing problems, approximation for isotropic and anisotropic scattering layer. — Moscow : Dep. in VINITI, No. 1631-B89, 1989. — P. 41. — (In Russian).
32. Shybanov E. B., Papkova A., Korchemkina E., et al. Blue Color Indices as a Reference for Remote Sensing of Black Sea Water // Remote Sensing. — 2023. — Vol. 15, no. 14. — P. 3658. — DOI:https://doi.org/10.3390/rs15143658.
33. Shybanov E. B., Papkova A. S. Influence of dust aerosol on the results of atmospheric correction of remote sensing reflection of the Black and Mediterranean Seas from MODIS satellite data // Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. — 2021. — Vol. 18, no. 6. — P. 46–56. — DOI:https://doi.org/10.21046/2070-7401-2021-18-6-46- 56. — (In Russian).
34. Shybanov E. B., Papkova A. S. Algorithm for Additional Correction of Remote Sensing Reflectance in the Presence of Absorbing Aerosol: Case Study // Physical Oceanography. — 2022a. — Vol. 29, no. 6. — P. 688–706. — DOI:https://doi.org/10.22449/1573-160X-2022-6-688-706.
35. Shybanov E. B., Papkova A. S. Differences in the Ocean Color atmospheric correction algorithms for remote sensing reflectance retrievals for different atmospheric conditions // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2022b. — Vol. 19, no. 6. — P. 9–17. — DOI:https://doi.org/10.21046/2070-7401-2022-19-6-9-17. — (In Russian).
36. Stein A. F., Draxler R. R., Rolph G. D., et al. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System // Bulletin of the American Meteorological Society. — 2015. — Vol. 96, no. 12. — P. 2059–2077. — DOI:https://doi.org/10.1175/bams-d-14-00110.1.
37. Suetin V. S., Korolev S. N., Kucheryavy A. A. Sun Glint Manifestation at Evaluating the Black Sea Water Optical Parameters using Satellite Measurements // Physical Oceanography. — 2016. — No. 3. — P. 47–56. — DOI:https://doi.org/10.22449/1573-160x-2016-3-47-56.
38. Suetin V. S., Korolev S. N., Suslin V. V., et al. Manifestation of Specific Features of the Optical Properties of Atmospheric Aerosol over the Black Sea in the Interpretation of SeaWiFS Data // Physical Oceanography. — 2004. — Vol. 14, no. 1. — P. 57–65. — DOI:https://doi.org/10.1023/B:POCE.0000025370.99460.88.
39. Suetin V. S., Korolev S. N., Suslin V. V., et al. Manifestations of dust aerosol in the results of optical observations of the Black Sea from space // Environmental safety of coastal and shelf zones and integrated use of shelf resources. — 2008. — Vol. 16. — P. 202–211. — EDN: https://elibrary.ru/YUNNQD ; (in Russian).
40. Suetin V. S., Tolkachenko G. A., Korolev S. N., et al. Optical properties of aerosols and atmospheric correction of satellite observations of the Black Sea // Morskoy gidrofizicheskiy zhurnal. — 2013. — No. 1. — P. 34–44. — EDN: https://elibrary.ru/TFYSDP ; (in Russian).
41. Thuillier G., Hersé M., Labs D., et al. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions // Solar Physics. — 2003. — Vol. 214, no. 1. — P. 1–22. — DOI:https://doi.org/10.1023/a:1024048429145.
42. Vazyulya S. V., Yushmanova A. V., Glukhovets D. I., et al. Validation of algorithms for estimating the absorption index of colored organic matter using satellite data in the north-eastern part of the Black Sea // Collection of abstracts of reports of the sixteenth All-Russian open conference «Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». — 2018. — P. 252. — EDN: https://elibrary.ru/YSSQUH ; (in Russian).
43. Viollier M., Tanre D., Deschamps P. Y. An algorithm for remote sensing of water color from space // Boundary-Layer Meteorology. — 1980. — Vol. 18, no. 3. — P. 247–267. — DOI:https://doi.org/10.1007/bf00122023.
44. Wei J., Yu X., Lee Z., et al. Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters // Remote Sensing of Environment. — 2020. — Vol. 250. — P. 112029. — DOI:https://doi.org/10.1016/j.rse.2020.112029.
45. Zibordi G., Holben B., Slutsker I., et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products // Journal of Atmospheric and Oceanic Technology. — 2009. — Vol. 26, no. 8. — P. 1634–1651. — DOI:https://doi.org/10.1175/2009jtecho654.1.
46. Zibordi G., Kwiatkowska E., Mélin F., et al. Assessment of OLCI-A and OLCI-B radiometric data products across European seas // Remote Sensing of Environment. — 2022. — Vol. 272. — DOI:https://doi.org/10.1016/j.rse.2022.112911.



