from 01.01.2017 until now
Kazan, Kazan, Russian Federation
from 01.01.2008 until now
Kazan, Russian Federation
Russian Federation
from 01.01.2021 until now
Russian Federation
Russian Federation
VAK Russia 1.6
UDC 550.312
UDC 550.831.016
UDC 550.8
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.31
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.06.01
Russian Library and Bibliographic Classification 263
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 6320
Russian Trade and Bibliographic Classification 63
BISAC SCI032000 Physics / Geophysics
BISAC SCI SCIENCE
This study explores the use of satellite gravity data and derived crustal models for predicting oil and gas potential in the east of the Russian platform. The research utilizes structural data (including GOCE satellite gravity-derived Moho depth), thermal data, and hydrocarbon potential data. The methodology involves three steps: 1) statistical analysis using Student's 𝑡-test to identify significant parameters distinguishing areas with and without hydrocarbon fields; 2) classification of the study area into three zones based on their hydrocarbon potential; and 3) application of a logistic regression machine learning model to forecast hydrocarbon potential in uncertain areas. The results show that most analyzed parameters have statistically significant differences between areas with and without hydrocarbon fields. The logistic regression model achieves 83% accuracy in predicting hydrocarbon potential. The study concludes that satellite gravity data and derived crustal models can be effectively used to forecast oil and gas potential in sedimentary basins, with the Precaspian basin, Cis-Ural trough, parts of the Central-Russia and Mezen rift systems, and the Timan-Pechora basin identified as the most promising areas in the east of the Russian platform.
satellite gravimetry, oil and gas content, hydrocarbon deposits, gravity field, hydrocarbon exploration, heat flow, machine learning, logistic regression
1. Artemieva I. M., Thybo H. EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region // Tectonophysics. — 2013. — Vol. 609. — P. 97–153. — DOI:https://doi.org/10.1016/j.tecto.2013.08.004.
2. Artemieva I. M. Lithosphere structure in Europe from thermal isostasy // Earth-Science Reviews. — 2019. — Vol. 188. — P. 454–468. — DOI:https://doi.org/10.1016/j.earscirev.2018.11.004.
3. Avrov V. Y., Buyalov N. I., Vasiliev V. G. Map of oil and gas potential of the USSR as of January 1 1967. — Moscow : Main Directorate of Geodesy, Cartography, 1969. — (In Russian).
4. Beardsmore G. R., Cull J. P. Crustal Heat Flow: A Guide to Measurement and Modelling. — Cambridge University Press, 2001. — DOI:https://doi.org/10.1017/cbo9780511606021.
5. Bouman J., Floberghagen R., Rummel R. More Than 50 Years of Progress in Satellite Gravimetry // Eos, Transactions American Geophysical Union. — 2013. — Vol. 94, no. 31. — P. 269–270. — DOI:https://doi.org/10.1002/2013eo310001.
6. Bouman J., Ebbing J., Meekes S., et al. GOCE gravity gradient data for lithospheric modeling // International Journal of Applied Earth Observation and Geoinformation. — 2015. — Vol. 35. — P. 16–30. — DOI:https://doi.org/10.1016/j.jag.2013.11.001.
7. Constantino R. R., Hackspacher P. C., Souza I. A. de, et al. Basement structures over Rio Grande Rise from gravity inversion // Journal of South American Earth Sciences. — 2017. — Vol. 75. — P. 85–91. — DOI:https://doi.org/10.1016/j.jsames.2017.02.005.
8. Förste C., König R., Bruinsma S., et al. On the principles of satellite-based Gravity Field Determination with special focus on the Satellite Laser Ranging technique // 20th International Workshop on Laser Ranging. — Potsdam : Helmholtz Centre, 2016.
9. Fowler C. M. R. The Solid Earth: An Introduction to Global Geophysics (2nd ed.) — Cambridge : Cambridge University Press, 2004.
10. Haas P., Ebbing J., Szwillus W. Sensitivity analysis of gravity gradient inversion of the Moho depth—a case example for the Amazonian Craton // Geophysical Journal International. — 2020. — Vol. 221, no. 3. — P. 1896–1912. — DOI:https://doi.org/10.1093/gji/ggaa122.
11. Jennings S. S., Hasterok D., Lucazeau F. ThermoGlobe: Extending the global heat flow database // Journal TBD. — 2021.
12. Nabighian M. N., Ander M. E., Grauch V. J. S., et al. Historical development of the gravity method in exploration // Geophysics. — 2005. — Vol. 70, no. 6. — P. 63–89. — DOI:https://doi.org/10.1190/1.2133785.
13. Ognev I., Ebbing J., Haas P. Crustal structure of the Volgo-Uralian subcraton revealed by inverse and forward gravity modelling // Solid Earth. — 2022a. — Vol. 13, no. 2. — P. 431–448. — DOI:https://doi.org/10.5194/se-13-431-2022.
14. Ognev I., Ebbing J., Lösing M., et al. The thermal state of Volgo–Uralia from Bayesian inversion of surface heat flow and temperature // Geophysical Journal International. — 2022b. — Vol. 232, no. 1. — P. 322–342. — DOI:https://doi.org/10.1093/gji/ggac338.
15. Paraskun V. I., Rozhetskiy B. Y. Database of Oil and gas fields of FSUE ”VNIGNI”. — Rosgeolfond, 2011. — (In Russian).
16. Sobh M., Ebbing J., Mansi A. H., et al. Inverse and 3D forward gravity modelling for the estimation of the crustal thickness of Egypt // Tectonophysics. — 2019. — Vol. 752. — P. 52–67. — DOI:https://doi.org/10.1016/j.tecto.2018.12.002.
17. Zheng W., Hsu H., Zhong M., et al. Requirements Analysis for Future Satellite Gravity Mission Improved-GRACE // Surveys in Geophysics. — 2014. — Vol. 36, no. 1. — P. 87–109. — DOI:https://doi.org/10.1007/s10712-014-9306-y.



