VAK Russia 1.6
UDC 551.46.0
UDC 551.465.43
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.25
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.06.01
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 6345
Russian Trade and Bibliographic Classification 63
BISAC SCI052000 Earth Sciences / Oceanography
BISAC SCI SCIENCE
In May–June 2024, an automatic mobile tethered Winchi profiler equipped with a YSI EXO2 Multiparameter Sonde was used to conduct fine-scale measurements of thermohaline stratification and bio-geo-optical parameters in Vityaz Bay (Peter the Great Bay, the Sea of Japan) for the first time. The data quality was improved by correcting the depth profiles of sea water temperature and absolute salinity to account for the response time of the temperature sensor, resulting in a reduction of the root-mean-square-error (RMSE) relative to reference profiles by factors of 5 and 6, respectively (final RMSE = 0.13◦C and 0.1 g/kg). The analysis revealed the presence of quasi-inertial (~18 hours) and diurnal (~24 hours) oscillations, as well as significant shifts in near-surface layer properties, through analysis of collocated thermohaline and bio-geo-optical data.
automatic underwater measurements, vertical profiles, real-time, sensor inertia correction, temporal variability, quasi-inertial internal waves
1. Carlson D. F., Fredj E. and Gildor H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations // Deep Sea Research Part I: Oceanographic Research Papers. — 2014. — Vol. 84. — P. 1–17. — https://doi.org/10.1016/j.dsr.2013.10.004.
2. Carstea E. M., Popa C. L., Baker A., et al. In situ fluorescence measurements of dissolved organic matter: A review // Science of The Total Environment. — 2020. — Vol. 699. — P. 134361. — https://doi.org/10.1016/j.scitotenv.2019.134361. EDN: https://elibrary.ru/KTBLUU
3. Doherty K. W., Frye D. E., Liberatore S. P., et al. A Moored Profiling Instrument // Journal of Atmospheric and Oceanic Technology. — 1999. — Vol. 16, no. 11. — P. 1816–1829. — https://doi.org/10.1175/1520-0426(1999)016<1816:ampi>2.0.CO;2.
4. Dunne J. P., Devol A. H. and Emerson S. The Oceanic Remote Chemical/Optical Analyzer (ORCA)-An Autonomous Moored Profiler // Journal of Atmospheric and Oceanic Technology. — 2002. — Vol. 19, no. 10. — P. 1709–1721. — https://doi.org/10.1175/1520-0426(2002)019<1709:torcoa>2.0.co;2.
5. Giles A. B. and McDougall T. J. Two methods for the reduction of salinity spiking of CTDs // Deep Sea Research Part A. Oceanographic Research Papers. — 1986. — Vol. 33, no. 9. — P. 1253–1274. — https://doi.org/10.1016/0198-0149(86)90023-3.
6. Honeywell. Honeywell Pressure Sensor, MLH Series. — 2025. — URL: https://automation.honeywell.com/us/en/products/sensing-solutions/sensors/pressure-sensors/mlh-series?sku=MLH300PSL06A (visited on 06/15/2025).
7. Kolding J. and Sagstad B. Cable-free automatic profiling buoy // Sea Technology. — 2013. — Vol. 54. — P. 10–12.
8. Lazaryuk A. Yu. Response functions of the temperature and conductivity sensors of CTD profilers // Oceanology. — 2008. — Vol. 48, no. 6. — P. 872–875. — https://doi.org/10.1134/s0001437008060131. EDN: https://elibrary.ru/LKXJGZ
9. Lochthofen N., Frommhold L., Ludszuweit J., et al. A Subsea Winched Profiling System (SWIPS) for Long-Term HighResolution Measurements in Ocean Surface Layers // Marine Technology Society Journal. — 2021. — Vol. 55, no. 2. — P. 165–171. — https://doi.org/10.4031/mtsj.55.2.3. EDN: https://elibrary.ru/PHMCCK
10. Lucas A. J., Nash J. D., Pinkel R., et al. Adrift Upon a Salinity-Stratified Sea: A View of Upper-Ocean Processes in the Bay of Bengal During the Southwest Monsoon // Oceanography. — 2016. — Vol. 29, no. 2. — P. 134–145. — https://doi.org/10.5670/oceanog.2016.46.
11. McDougall T. and Barker P. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. — CSIRO Marine, Atmospheric Research, 2011.
12. McDougall T. J., Jackett D. R. and Millero F. J. An algorithm for estimating Absolute Salinity in the global ocean // Ocean Science Discussions. — 2009. — Vol. 6, no. 1. — P. 215–242. — https://doi.org/10.5194/osd-6-215-2009.
13. Novotryasov V. V., Stepanov D. V. and Yaroshchuk I. O. Observations of internal undular bores on the Japan/East Sea shelf-coastal region // Ocean Dynamics. — 2016. — Vol. 66, no. 1. — P. 19–25. — https://doi.org/10.1007/s10236-015-0905-z. EDN: https://elibrary.ru/WPPTHL
14. Ostrovskii A., Stepanov D., Kaplunenko D., et al. Turbulent mixing and its contribution to the oxygen flux in the northwestern boundary current region of the Japan/East Sea, April-October 2015 // Journal of Marine Systems. — 2021. — Vol. 224. — P. 103619. — https://doi.org/10.1016/j.jmarsys.2021.103619. EDN: https://elibrary.ru/ZOWZLG
15. Ostrovskii A. G., Emelianov M. V., Kochetov O. Yu., et al. Automated Tethered Profiler for Hydrophysical and Bio-Optical Measurements in the Black Sea Carbon Observational Site // Journal of Marine Science and Engineering. — 2022. — Vol. 10, no. 3. — P. 322. — https://doi.org/10.3390/jmse10030322. EDN: https://elibrary.ru/ITVPXR
16. Ostrovskii A. G., Zatsepin A. G., Soloviev V. A., et al. Autonomous system for vertical profiling of the marine environment at a moored station // Oceanology. — 2013. — Vol. 53, no. 2. — P. 233–242. — https://doi.org/10.1134/s0001437013020124. EDN: https://elibrary.ru/RFEAZN
17. Park Y. G., Seo S., Kim D. G., et al. Coastal Observation Using a Vertical Profiling System at the Southern Coast of Korea // Frontiers in Marine Science. — 2021. — Vol. 8. — P. 668733. — https://doi.org/10.3389/fmars.2021.668733. EDN: https://elibrary.ru/ALUCQV
18. Pfannkuche J. and Schmidt A. Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures // Hydrological Processes. — 2003. — Vol. 17, no. 10. — P. 1951– 1963. — https://doi.org/10.1002/hyp.1220.
19. Pinkel R., Goldin M. A., Smith J. A., et al. The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves // Journal of Atmospheric and Oceanic Technology. — 2011. — Vol. 28, no. 3. — P. 426–435. — https://doi.org/10.1175/2010jtecho805.1.
20. Poulain P. M. Unveiling near-inertial wave dynamics and storm-driven currents: Insights from moorings in the coastal Mediterranean Sea // Continental Shelf Research. — 2024. — Vol. 282. — P. 105321. — https://doi.org/10.1016/j.csr.2024.105321. EDN: https://elibrary.ru/WTQJZP
21. RBR Ltd. RBRconcerto and RBRduo instruments. — 2025. — URL: https://rbr-global.com/products/standardloggers/rbrduo-ct/ (visited on 06/15/2025).
22. Send U., Fowler G., Siddall G., et al. SeaCycler: A Moored Open-Ocean Profiling System for the Upper Ocean in Extended Self-Contained Deployments // Journal of Atmospheric and Oceanic Technology. — 2013. — Vol. 30, no. 7. — P. 1555–1565. — https://doi.org/10.1175/jtech-d-11-00168.1.
23. Shvoev D. A., Kochetov O. Yu., Volkov S. V., et al. The autonomous tethered profiler Winchi // Podvodnye issledovaniia i robototehnika. — 2024. — Vol. 50, no. 4. — P. 67–77. — https://doi.org/10.37102/1992-4429_2024_50_04_07. — (In Russian).
24. Stepanov D., Ostrovskii A., Ryzhov E., et al. Shear-driven vertical mixing and turbulent exchange over the continental slope in the northwestern Sea of Japan // Ocean Dynamics. — 2024. — Vol. 74, no. 11/12. — P. 919–934. — https://doi.org/10.1007/s10236-024-01639-2. EDN: https://elibrary.ru/JQJAYJ
25. Stepanov D. V., Ostrovskii A. G. and Lazaryuk A. Yu. Diapycnal Mixing and Double Diffusion over the Continental Slope in the Northern Sea of Japan in the Warm Half-Year // Izvestiya, Atmospheric and Oceanic Physics. — 2023. — Vol. 59, no. 5. — P. 572–582. — https://doi.org/10.1134/S0001433823050109. EDN: https://elibrary.ru/QXOZEN
26. Wijesekera H. W., Jarosz E., Wang D. W., et al. Tidally Driven Mixing "Hot Spot" at the Entrance of the Japan/East Sea // Geophysical Research Letters. — 2022. — Vol. 49, no. 18. — e2022GL100315. — https://doi.org/10.1029/2022gl100315. EDN: https://elibrary.ru/BQEGHX
27. Xiao S., Zhang M., Liu C., et al. CTD Sensors for Ocean Investigation Including State of Art and Commercially Available // Sensors. — 2023. — Vol. 23, no. 2. — P. 586. — https://doi.org/10.3390/s23020586. EDN: https://elibrary.ru/YNTYZK
28. Yaroshchuk I., Kosheleva A., Lazaryuk A., et al. Estimation of Seawater Hydrophysical Characteristics from Thermistor Strings and CTD Data in the Sea of Japan Shelf Zone // Journal of Marine Science and Engineering. — 2023. — Vol. 11, no. 6. — P. 1204. — https://doi.org/10.3390/jmse11061204. EDN: https://elibrary.ru/YKKGER
29. Yaroshchuk I. O., Leont’ev A. P., Kosheleva A. V., et al. On intense internal waves in the coastal zone of the Peter the Great Bay (the Sea of Japan) // Russian Meteorology and Hydrology. — 2016. — Vol. 41, no. 9. — P. 629–634. — https://doi.org/10.3103/s1068373916090053. EDN: https://elibrary.ru/XFMJPF
30. YSI Inc. EXO fDOM (fluorescence of Dissolved Organic Matter) Smart Sensor. — 2025a. — URL: https://www.ysi.com/product/id-599104-01/exo-fdom-smart-sensor (visited on 06/15/2025).
31. YSI Inc. EXO Turbidity Smart Sensor. — 2025b. — URL: https://www.ysi.com/product/id-599101-01/exo-turbiditysmart-sensor (visited on 06/15/2025).
32. YSI Inc. EXO WipedCT (Wiped Conductivity & Temperature) Sensor. — 2025c. — URL: https://www.ysi.com/WipedCT (visited on 06/15/2025).
33. YSI Inc. EXO2 Multiparameter Sonde. — 2025d. — URL: https://www.ysi.com/exo2 (visited on 06/15/2025).



