The generation of internal gravity waves in the ocean with an arbitrary distribution of the buoyancy frequency generated by a moving source of perturbations is considered. The basic dispersion characteristics determining the properties of the generated far wave fields are studied analytically and numerically. The results of numerical computations of internal wave fields for different generation modes are presented. It is shown that the far wave fields of a separate mode can be presented as a sum of wave trains. The article investigates the specific characteristics of how these wave trains are generated. The proposed approach can be used to model internal wave wakes from a moving typhoon.
Internal gravity waves, stratified ocean, far fields, asymptotics
1. Bulatov, V. V., Yu. V. Vladimirov (2012) , Wave Dynamics of Stratified Mediums, 584 pp., Nauka, Moscow.
2. Bulatov, V. V., Yu. V. Vladimirov (2015) , Volni v Stratifitsirovannikh Sredakh, 735 pp., Nauka, Moscow (in Russian).
3. Bulatov, V. V., Yu. V. Vladimirov (2018) , Unsteady regimes of internal gravity wave generation in the ocean, Russian Journal of Earth Sciences, 18, p. ES2004, https://doi.org/10.2205/2018ES000619.
4. Gill, A. E. (1984) , On the behavior of internal waves in the wakes of storms, Journal of Physical Oceanography, 14, p. 1129-1151, https://doi.org/10.1175/1520-0485(1984)014%3C1129:OTBOIW%3E2.0.CO;2.
5. Frey, D. I., A. N. Novigatsky, M. D. Kravchishina, E. G. Morozov (2017) , Water structure and currents in the Bear Island Trough in July-August 2017, Russian Journal of Earth Sciences, 17, p. ES3003, https://doi.org/10.2205/2017ES000602.
6. Furuichi, N., T. Hibiya, Y. Niwa (2008) , Model-predicted distribution of wind-induced internal wave energy in the world's oceans, Journal of Geophysical Research: Oceans, 113, p. C09034, https://doi.org/10.1029/2008JC004768.
7. Lecoanet, D., M. Le Bars, K. J. Burns, G. M. Vasil, B. P. Brown, E. Quataert, J. S. Oishi (2015) , Numerical simulations of internal wave generation by convection in water, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 9, p. 1-10, https://doi.org/10.1103/PhysRevE.91.063016.
8. Kang, D., O. Fringer (2010) , On the calculation of available potential energy in internal wave fields, Journal of Physical Oceanography, 40, p. 2539-2545, https://doi.org/10.1175/2010JPO4497.1.
9. Massel, S. R. (2015) , Internal Gravity Waves in the Shallow Seas, 163 pp., Springer, Berlin, https://doi.org/10.1007/978-3-319-18908-6.
10. Mei, C. C., M. Stiassnie, D. K.-P. Yue (2017) , Theory and Applications of Ocean Surface Waves. Advanced series of ocean engineering. V. 42, 1500 pp., World Scientific Publishing, London, https://doi.org/10.1142/10212.
11. Morozov, E. G. (2018) , Oceanic Internal Tides. Observations, Analysis and Modeling, 317 pp., Springer, Berlin, https://doi.org/10.1007/978-3-319-73159-9.
12. Morozov, E. G., G. Parrilla-Barrera, M. G. Velarde, A. D. Scherbinin (2003) , The Straits of Gibraltar and Kara Gates: A comparison of internal tides, Oceanologica Acta, 26, no. 3, p. 231-241, https://doi.org/10.1016/S0399-1784(03)00023-9.
13. Morozov, E. G., V. T. Paka, V. V. Bakhanov (2008) , Strong internal tides in the Kara Gates Strait, Geophysical Research Letters, 35, p. L16603, https://doi.org/10.1029/2008GL033804.
14. Pedlosky, J. (2010) , Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics, 260 pp., Springer, Berlin.
15. Svirkunov, P. N., M. V. Kalashnik (2014) , Phase patterns of dispersive waves from moving localized sources, Phys.-Usp., 57, no. 1, p. 80-91, https://doi.org/10.3367/UFNe.0184.201401d.0089.
16. Sutherland, B. R. (2010) , Internal Gravity Waves, 394 pp., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511780318.
17. Tiugin, D. Iu., A. A. Kurkin, E. N. Pelinovskij, O. E. Kurkina (2012) , Povishenie proizvoditelnosti programnogo kompleksa dlia modelorovaniia vnutrennikh gravitatsionikh voln IGW Research s pomoshchiu Intel® Parallel Studio XE 2013, Fundamentalnaia i Prikladnaia Gidrofizika, 5, no. 3, p. 89-95 (in Russian).
18. Velarde, M. G. (ed.), et al. (2018) , The Ocean in Motion, 625 pp., Springer Oceanography. Springer International Publishing AG, part of Springer Nature, Berlin, https://doi.org/10.1007/978-3-319-71934-4.