с 16.09.2018 по настоящее время
Апатиты, Россия
с 01.01.2018 по настоящее время
Центр физико-технических проблем энергетики Севера КНЦ РАН (Инженер-программист)
с 01.01.2022 по настоящее время
Апатиты, Мурманская область, Россия
с 01.01.2003 по настоящее время
Центр физико-технических проблем энергетики Севера КНЦ РАН (Научный сотрудник)
Геофизический центр РАН
Апатиты, Мурманская область, Россия
Апатиты, Мурманская область, Россия
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
BISAC SCI019000 Earth Sciences / General
The main problem of electric utilities around the world is to ensure continuous power supply to consumers. One of the causes of power outages and blackouts can be geomagnetic storms during periods of the increased solar activity. They arouse geomagnetically induced currents (GICs) flowing in the long-distance high-voltage power grids on Earth’s surface. The history of this phenomenon investigation shows that GICs during strong geomagnetic storms had led to blackouts in certain regions of Canada, Sweden and the USA. To study these phenomena and assess the risks of such accidents for the regional system, a GICs registration system in 330 kV autotransformers neutrals of the Kola-Karelian power transit was developed in northwestern Russia. During 11 years of monitoring numerous cases of the flow of high values of quasi-dc currents with different time durations, induced by variations of the geomagnetic field, have been registered. In order to analyze the currents a wavelet transform was chosen, since this method allows to define not only the frequency composition but also changes in spectral characteristics over time, which is significant in the study of GIC. The paper presents a discussion of GIC scalograms obtained for four events of Solar Cycle 24: 13-14 November 2012, 17-18 March 2015, 7-8 September 2015 and 7-8 September 2017. The analysis showed that the characteristic duration of the peak of the considered GICs is from 4.6 to 11.1 min.
geomagnetically induced currents, geomagnetic storm, autotransformer, continuous wavelet transform
1. Adhikari, B., N. Sapkota, S. Dahal, B. Bhattarai, K. Khanal, and N. P. Chapagain (2019), Spectral characteristic of geomagnetically induced current during geomagnetic storms by wavelet techniques, Journal of Atmospheric and Solar-Terrestrial Physics, 192, 104,777, doihttps://doi.org/10.1016/j.jastp.2018.01.020.; ; EDN: https://elibrary.ru/LZVPSJ
2. Aksenovich, T. V. (2020), Comparison of the Use of Wavelet Transform and Short-Time Fourier Trans- form for the Study of Geomagnetically Induced Current in the Autotransformer Neutral, in 2020 Inter- national Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1-5, IEEE, doihttps://doi.org/10.1109/fareastcon50210.2020.9271210.
3. Albert, D., P. Schachinger, R. L. Bailey, H. Renner, and G. Achleitner (2022), Analysis of Long-Term GIC Measure- ments in Transformers in Austria, Space Weather, 20(1), e2021SW002,912, doihttps://doi.org/10.1029/2021sw002912.
4. Barannik, M. B., A. N. Danilin, Y. V. Kat’kalov, V. V. Kolobov, Y. A. Sakharov, and V. N. Selivanov (2012), A system for recording geomagnetically induced currents in neutrals of power autotransformers, Instruments and Experimental Techniques, 55(1), 110-115, doihttps://doi.org/10.1134/s0020441211060121.; DOI: https://doi.org/10.1134/S0020441211060121; EDN: https://elibrary.ru/NQFSKL
5. Belakhovsky, V., V. Pilipenko, M. Engebretson, Y. Sakharov, and V. Selivanov (2019), Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines, Journal of Space Weather and Space Climate, 9, 18, doihttps://doi.org/10.1051/swsc/2019015.; ; EDN: https://elibrary.ru/SVNGAS
6. Boteler, D. H. (2001), Assessment of Geomagnetic Hazard to Power Systems in Canada, Natural Hazards, 23(2), 101-120, doihttps://doi.org/10.1023/A:1011194414259.; DOI: https://doi.org/10.1023/a:1011194414259; EDN: https://elibrary.ru/ZUGUWK
7. Choi, K.-C., M.-Y. Park, Y. Ryu, Y. Hong, J.-H. Yi, S.-W. Park, and J.-H. Kim (2015), Installation of Induced Current Measurement Systems in Substations and Analysis of GIC Data during Geomagnetic Storms, Journal of Astronomy and Space Sciences, 32(4), 427-434, doihttps://doi.org/10.5140/JASS.2015.32.4.427.
8. Dimmock, A. P., L. Rosenqvist, J.-O. Hall, A. Viljanen, E. Yordanova, I. Honkonen, M. André, and E. C. Sjöberg (2019), The GIC and Geomagnetic Response Over Fennoscandia to the 7-8 September 2017 Geomagnetic Storm, Space Weather, 17(7), 989-1010, doihttps://doi.org/10.1029/2018sw002132.; DOI: https://doi.org/10.1029/2018SW002132; EDN: https://elibrary.ru/EPMRSG
9. Erinmez, I., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system, Journal of Atmospheric and Solar-Terrestrial Physics, 64(5-6), 743-756, doihttps://doi.org/10.1016/s1364-6826(02)00036-6.; EDN: https://elibrary.ru/AXUVTL
10. Falayi, E., O. Ogunmodimu, O. Bolaji, J. Ayanda, and O. Ojoniyi (2017), Investigation of geomagnetic induced current at high latitude during the storm-time variation, NRIAG Journal of Astronomy and Geophysics, 6(1), 131- 140, doihttps://doi.org/10.1016/j.nrjag.2017.04.010.
11. Guillon, S., P. Toner, L. Gibson, and D. Boteler (2016), A Colorful Blackout: The Havoc Caused by Auro- ral Electrojet Generated Magnetic Field Variations in 1989, IEEE Power and Energy Magazine, 14(6), 59-71, doihttps://doi.org/10.1109/MPE.2016.2591760.
12. Kappenman, J. (2018), Geomagnetic Disturbances and Impacts upon Power System Operation, in Electric Power Generation, Transmission, and Distribution: The Electric Power Engineering Handbook, pp. 1-22, CRC Press, doihttps://doi.org/10.1201/9781315222424-17.
13. Lee, G., R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O'Leary (2019), PyWavelets: A Python package for wavelet analysis, Journal of Open Source Software, 4(36), 1237, doihttps://doi.org/10.21105/joss.01237.
14. Liu, C., L. Liu, and R. Pirjola (2009), Geomagnetically induced currents in the high-voltage power grid in China, IEEE Transactions on Power Delivery, 24(4), 2368-2374, doihttps://doi.org/10.1109/TPWRD.2009.2028490.
15. Mac Manus, D., C. Rodger, M. Dalzell, A. Thomson, M. Clilverd, and T. Petersen (2017), Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver, Space Weather, 15(8), 1020-1038, doihttps://doi.org/10.1002/2017SW001635.
16. Mallat, S. (2008), A Wavelet Tour of Signal Processing: The Sparse Way. A Wavelet Tour of Signal Processing: The Sparse Way, 1-805 pp., doihttps://doi.org/10.1016/B978-0-12-374370-1.X0001-8.; ; EDN: https://elibrary.ru/YGCTMD
17. Molinski, T. (2002), Why utilities respect geomagnetically induced currents, Journal of Atmospheric and Solar- Terrestrial Physics, 64(16), 1765-1778, doihttps://doi.org/10.1016/S1364-6826(02)00126-8.; EDN: https://elibrary.ru/BBFQEH
18. Oliveira, D., and C. Ngwira (2017), Geomagnetically Induced Currents: Principles, Braz J Phys, 47, 552-560, doihttps://doi.org/10.1007/s13538-017-0523-y.; ; EDN: https://elibrary.ru/GVEIVJ
19. Pulkkinen, A., S. Lindahl, A. Viljanen, and R. Pirjola (2005), Geomagnetic storm of 29-31 October 2003: Geo- magnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather, 3(8), 08 03, doihttps://doi.org/10.1029/2004SW000123.
20. Pulkkinen, A., R. Pirjola, and A. Viljanen (2008), Statistics of extreme geomagnetically induced current events, Space Weather, 6(7), 07,001, doihttps://doi.org/10.1029/2008SW000388.
21. Torrence, C., and G. P. Compo (1998), A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, 79(1), 61-78, doi:10/bhbwhf.
22. Trichtchenko, L. (2021), Frequency Considerations in GIC Applications, Space Weather, 19(8), 2020 002,694, doihttps://doi.org/10.1029/2020SW002694.; ; EDN: https://elibrary.ru/HKKZKM
23. Viljanen, A. (2011), European Project to Improve Models of Geomagnetically Induced Currents, Space Weather, 9(7), 07,007, doihttps://doi.org/10.1029/2011SW000680.
24. Watari, S. (2017), Geomagnetic storms of cycle 24 and their solar sources, Earth, Planets and Space, 69(1), 1-8, doihttps://doi.org/10.1186/s40623-017-0653-z.; ; EDN: https://elibrary.ru/YGZVVP
25. Watari, S., S. Nakamura, and Y. Ebihara (2021), Measurement of geomagnetically induced current (GIC) around Tokyo, Japan, Earth, Planets and Space, 73(1), 102, doihttps://doi.org/10.1186/s40623-021-01422-3.; ; EDN: https://elibrary.ru/WKBSHP
26. Wik, M., A. Viljanen, R. Pirjola, A. Pulkkinen, P. Wintoft, and H. Lundstedt (2008), Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden, Space Weather, 6(7), doihttps://doi.org/10.1029/2007SW000343.
27. Wu, C.-C., K. Liou, R. P. Lepping, L. Hutting, S. Plunkett, R. A. Howard, and D. Socker (2016), The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”, Earth, Planets and Space, 68(1), 1-12, doihttps://doi.org/10.1186/s40623-016-0525-y.; ; EDN: https://elibrary.ru/XTQPQF
28. Xu, W.-H., Z.-Y. Xing, N. Balan, L.-K. Liang, Y.-L. Wang, and Q.-H. Zhang (2022), Spectral analysis of geomagneti- cally induced current and local magnetic field during the 17 March 2013 geomagnetic storm, Advances in Space Research, 69(9), 3417-3425, doihttps://doi.org/10.1016/j.asr.2022.02.025.
29. Yagova, N. V., V. A. Pilipenko, Y. A. Sakharov, and V. N. Selivanov (2021), Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents, Earth, Planets and Space, 73(1), 1-13, doihttps://doi.org/10.1186/s40623-021-01407-2.; ; EDN: https://elibrary.ru/MRSQQU