Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. I. Mathematical preliminaries
Аннотация и ключевые слова
Аннотация (русский):
We consider Bloch eigenmodes in three linear stability problems: the kinematic dynamo problem, the hydrodynamic and MHD stability problem for steady space-periodic flows and MHD states. A Bloch mode is a product of a field of the same periodicity, as the state subjected to perturbation, and a planar harmonic wave, eiq·x. The complex exponential cancels out from the equations of the respective eigenvalue problem, and the wave vector q remains in the equations as a numeric parameter. The resultant problem has a significant advantage from the numerical viewpoint: while the Bloch mode involves two independent spatial scales, its growth rate can be computed in the periodicity box of the perturbed state. The three-dimensional space, where q resides, splits into a number of regions, inside which the growth rate is a smooth function of q. In preparation for a numerical study of the dominant (i.e., the largest over q) growth rates, we have derived expressions for the gradient of the growth rate in q and proven that, for parity-invariant flows and MHD steady states or when the respective eigenvalue of the stability operator is real, half-integer q (whose all components are integer or half-integer) are stationary points of the growth rate. In prior works it was established by asymptotic methods that high spatial scale separation (small q) gives rise to the phenomena of the α-effect or, for parity-invariant steady states, of the eddy diffusivity. We review these findings tailoring them to the prospective numerical applications.

Ключевые слова:
Kinematic dynamo problem, hydrodynamic linear stability problem, magnetohydrodynamic linear stability problem, Bloch mode, magnetic α-effect, AKA-effect, combined magnetohydrodynamic α-effect, magnetic eddy diffusivity, eddy viscosity, scale separation.
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Andrievsky, A., A. Brandenburg, A. Noullez, and V. Zheligovsky (2015), Negative magnetic eddy diffusivities from test-field method and multiscale stability theory, The Astrophysical Journal, 811(2), 135, DOI:https://doi.org/10.1088/0004-637x/811/2/135

2. Bloch, F. (1929), Über die Quantenmechanik der Elektronen in Kristallgittern, Zeitschrift für Physik A. Hadrons and Nuclei, 52, 555-600.

3. Braginskii, S. I. (1964a), Self-excitation of a magnetic field during the motion of a highly conducting fluid, Sov. Phys. JETP, 20, 726-735.

4. Braginskii, S. I. (1964b), Theory of the hydromagnetic dynamo, Sov. Phys. JETP, 20, 1462- 1471.

5. Braginskii, S. I. (1964c), Kinematic models of the Earth’s hydromagnetic dynamo, Geomagn. Aeron., 4, 572-583.

6. Braginskii, S. I. (1964d), Magnetohydrodynamics of the Earth’s core, Geomagn. Aeron., 4, 698-711.

7. Braginskii, S. I. (1975), An almost axially symmetric model of the hydromagnetic dynamo of the Earth, I, Geomagn. Aeron., 15, 149-156.

8. Brandenburg, A., and K. Subramanian (2005), Astrophysical magnetic fields and nonlinear dynamo theory, Physics Reports, 417(1-4), 1-209, https://doi.org/10.1016/j.physrep.20 05.06.005.

9. Brandenburg, A., D. Sokoloff, and K. Subramanian (2012), Current status of turbulent dynamo theory. From large-scale to small-scale dynamos, Space Science Reviews, 169(1-4), 123-157, https://doi.org/10.1007/s11214-012-9909-x.

10. Cameron, R. H., M. Dikpati, and A. Brandenburg (2016), The Global Solar Dynamo, Space Science Reviews, 210(1-4), 367-395, https://doi.org/10.1007/s11214-015-0230-3.

11. Charbonneau, P. (2005), Dynamo Models of the Solar Cycle, Living Rev. Solar Phys., 2, https://doi.org/10.12942/lrsp-2005-2.

12. Charbonneau, P. (2014), Solar Dynamo Theory, Annual Review of Astronomy and Astrophysics, 52(1), 251-290, DOI:https://doi.org/10.1146/annurev-astro-081913-040012

13. Chertovskih, R., and V. Zheligovsky (2015), Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer, Physica D: Nonlinear Phenomena, 313, 99-116, https://doi.org/10.1016/j.physd.2015.09.012.

14. Dubrulle, B., and U. Frisch (1991), Eddy viscosity of parity-invariant flow, Physical Review A, 43(10), 5355-5364, https://doi.org/10.1103/physreva.43.5355.

15. Krause, F., and K.-H. Rädler (1980), Mean-Field Magnetohydrodynamics and Dynamo Theory, Elsevier, Berlin, https://doi.org/10.1016/c2013-0-03269-0.

16. Lanotte, A., A. Noullez, M. Vergassola, and A. Wirth (1999), Large-scale dynamo by negative magnetic eddy diffusivities, Geophys. Astrophys. Fluid Dyn., 91, 131-146, https://doi.org/10.1080/03091929908203701.

17. Miesch, M. S. (2012), The Solar Dynamo, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1970), 3049-3069, https://doi.org/https://doi.org/10.1098/rsta.2011.0507.

18. Moffatt, H. K. (1978), Magnetic field generation in electrically conducting fluids, Cambridge University Press.

19. Ossendrijver, M. A. J. H. (2000), Grand minima in a buoyancy-driven solar dynamo, Astron. Astrophys., 359, 364-372.

20. Parker, E. N. (1955), Hydrodynamic Dynamo Models, Astrophys J., 122, 293-314, https://doi.org/10.1086/146087.

21. Popova, H. P. (2016), Current results on the asymptotics of dynamo models, Physics-Uspekhi, 59(6), 513, https://doi.org/10.3367/UFNe.2016.02.037727.

22. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical recipes in Fortran. The art of scientific computing, 2nd ed., Cambridge University Press.

23. Rädler, K.-H. (2007), Mean-Field Dynamo Theory: Early Ideas and Today’s Problems, in Magnetohydrodynamics: Historical Evolution and Trends, edited by S. S. Molokov, R. Moreau, and H. K. Moffatt, pp. 55-72, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-4833-3_4.

24. Rasskazov, A., R. Chertovskih, and V. Zheligovsky (2018), Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of incompressible electrically conducting fluid, Phys. Rev. E, 97, 043210, https://doi.org/10.1103/PhysRevE.97.043201.

25. Roberts, G. O. (1970), Spatially Periodic Dynamos, Phil. Trans. Roy. Soc. Lond. A, 266(1179), 535-558.

26. Roberts, G. O. (1972), Dynamo action of fluid motions with two-dimensional periodicity, Phil. Trans. Roy. Soc. Lond. A, 271, 411-454, https://doi.org/10.1098/rsta.1972.0015.

27. Ruzmaikin, A. A., D. D. Sokolov, A. A. Soloviev, and A. M. Shukurov (1989), Couette- Poiseuille flow as a screw dynamo, Magnitnaya Gidrodinamika, 1(9), 6-11 (in Russian).

28. Soloviev, A. A. (1985a), Magnetic dynamo existence for a dynamically possible motion of conducting fluid, Transactions (Doklady) of the Academy of Sciences of the USSR, (1), 44-48 (in Russian).

29. Soloviev, A. A. (1985b), Magnetic field excitation by an axisymmetric motion of conducting fluid, Proc. of the Academy of Sciences of the USSR, Physics of the Earth, (4), 101-103 (in Russian).

30. Soloviev, A. A. (1985c), Description of the parameter region of the spiral couette-poiseuille flow of conducting fluid, for which magnetic field excitation is possible, Proc. of the Academy of Sciences of the USSR, Physics of the Earth, (12), 40-47 (in Russian).

31. Soloviev, A. A. (1987), Magnetic field excitation by a motion of conducting fluid at high magnetic reynolds numbers, Proc. of the Academy of Sciences of the USSR, Physics of the Earth, 5(5), 77-80 (in Russian).

32. Steenbeck, M., F. Krause, and K.-H. Rädler (1971), A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces, in The Turbulent Dynamo: A Translation of a Series of Papers by F. Krause, K.-H. Rädler, and M. Steenbeck, edited by P. H. Roberts and M. Stix, pp. 29-47, Tech. Note UCAR/NCAR/IA-60, Boulder, Colorado, https://doi.org/10.5065/D6DJ5CK7.

33. Vishik, M. M. (1986), Periodic Dynamo, in Mathematical methods in seismology and geody- namics, Computational seismology, vol. 19, edited by V. I. Keilis-Borok and A. L. Levshin, pp. 186-215, Nauka, Moscow (in Russian).

34. Vishik, M. M. (1987), Periodic Dynamo II, in Numerical modelling and analysis of geophysical processes, Computational seismology, vol. 20, edited by V. I. Keilis-Borok and A. L. Levshin, pp. 12-22, Nauka, Moscow (in Russian).

35. Zheligovsky, V. (1991), α-effect in generation of magnetic field by a flow of conducting fluid with internal scale in an axisymmetric volume, Geophys. Astrophys. Fluid Dynamics, 59, 235-251, https://doi.org/10.1080/03091929108227781.

36. Zheligovsky, V. (2011), Large-scale perturbations of magnetohydrodynamic regimes: linear and weakly nonlinear stability theory, Lecture Notes in Physics, 829, https://doi.org/10.1 007/978-3-642-18170-2.

37. Zheligovsky, V. A. (2003), On the Linear Stability of Spatially Periodic Steady Magnetohy- drodynamic Systems with Respect to Long-Period Perturbations, Izvestiya, Physics of the Solid Earth, 39(5), 409-418.

38. Zheligovsky, V. A., and R. A. Chertovskih (2020), On Kinematic Generation of the Magnetic Modes of Bloch Type, Izvestiya, Physics of the Solid Earth, 56(1), 103-116, https://doi.org/https://doi.org/10.1134/s1069351320010152.

39. Zheligovsky, V. A., O. M. Podvigina, and U. Frisch (2001), Dynamo effect in parity-invariant flow with large and moderate separation of scales, Geophysical & Astrophysical Fluid Dynamics, 95(3-4), 227-268, https://doi.org/10.1080/03091920108203726.

Войти или Создать
* Забыли пароль?