The Coherence of the Oceanic Heat Transport Through the Nordic Seas: Oceanic Heat Budget and Interannual Variability
Аннотация и ключевые слова
Аннотация (русский):
The Atlantic Water is the main source of heat and salt in the Arctic. Properties of the Atlantic Water inflow regionally affect sea ice extent and deep water formation rate. The Atlantic Water heat transported into the Nordic Seas has a significant impact on the local climate and is investigated here along with its inter-annual variability. We use the ARMOR3D dataset, which is a collection of 3D monthly temperature, salinity and geostrophic velocities fields, derived from in situ and satellite data on a regular grid available since 1993. We compare the heat transport across seven zonal transects in the eastern part of the Nordic seas, from the Svinøy section (65◦N) to the Fram Strait (78.8◦N). The correlations of the interannual variations of the advective heat fluxes rapidly drop from Svinøy to Jan Mayen sections and between Bear Island and Sørkapp sections. This is a result of different tendencies in its interannual evolution over the latest decades in the southern and the northern parts of the study region, as well as of a differential damping of the observed periodicities along the AtlanticWater path on its way north (the amplitude of 5–6 year oscillations drops significantly faster than that of 2–3 year oscillations). A certain link between the heat fluxes and the North Atlantic Oscillation (NAO), Arctic Oscillation (AO) and East Atlantic (EA) indices is observed only at the southern sections. On the other hand, the heat fluxes at all sections show a consistent increase during the dominance of western weather typeWand a decrease – of meridional weather type C. The link is explained by the variations of the wind fields, favorable for the sea-level build-up (Ekman pumping) east of the branching of the Norwegian Current for type W and an opposite tendency for type C.

Ключевые слова:
the Nordic Seas, the Atlantic Water, heat flux, correlation loss, long-term variability.
Текст произведения (PDF): Читать Скачать
Список литературы

1. Aagaard, K., A. Foldvik, and S. R. Hillman (1987), The West Spitsbergen Current: Disposition and water mass transforma- tion, Journal of Geophysical Research, 92(C4), 3778-3784,

2. Bacon, S., Y. Aksenov, S. Fawcett, and G. Madec (2015), Arctic mass, freshwater and heat fluxes: Methods and modelled seasonal variability, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2052), 20140,169,

3. Barashkova, N. K., I. V. Kuzhevskaya, and D. V. Polyakov (2015), Classification of forms of atmospheric circulation: textbook (in Russian).

4. Bashmachnikov, I. L., A. Y. Yurova, L. P. Bobylev, and A. V. Vesman (2018), Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region, Izvestiya, Atmospheric and Oceanic Physics, 54(2), 213-222,

5. Bashmachnikov, I. L., I. E. Kozlov, L. A. Petrenko, N. I. Glok, and C. Wekerle (2020), Eddies in the North Greenland Sea and Fram Strait From Satellite Altimetry, SAR and High-Resolution Model Data, Journal of Geophysical Research: Oceans, 125(7),

6. Bashmachnikov, I. L., R. P. Raj, P. Golubkin, and I. E. Kozlov (2023), Heat Transport by Mesoscale Eddies in the Norwegian and Greenland Seas, Journal of Geophysical Research: Oceans, 128(2), 1-19,

7. Beszczynska-Möller, A., E. Fahrbach, U. Schauer, and E. Hansen (2012), Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010, ICES Journal of Marine Science, 69(5), 852-863,

8. Beszczynska-Möller, A., W.-J. von Appen, and E. Fahrbach (2015), Physical oceanography and current meter data from moorings F1-F14 and F15/F16 in the Fram Strait, 1997-2012,

9. Bezuglova, N. N., and G. S. Zinchenko (2009), Regional climatic manifestations of global atmospheric circulation in the south of Western Siberia, Geography and Natural Resources, 3, 83-87 (in Russian).

10. Björk, G., B. G. Gustafsson, and A. Stigebrandt (2001), Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content and potential energy, Polar Research, 20(2), 161-168,

11. Bosse, A., I. Fer, H. Søiland, and T. Rossby (2018), Atlantic Water Transformation Along Its Poleward Pathway Across the Nordic Seas, Journal of Geophysical Research: Oceans, 123(9), 6428-6448,

12. Buckley, M. W., and J. Marshall (2016), Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Reviews of Geophysics, 54(1), 5-63,

13. Carmack, E., I. Polyakov, L. Padman, I. Fer, E. Hunke, J. Hutchings, J. Jackson, D. Kelley, R. Kwok, C. Layton, H. Melling, D. Perovich, O. Persson, B. Ruddick, M.-L. Timmermans, J. Toole, T. Ross, S. Vavrus, and P. Winsor (2015), Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic, Bulletin of the American Meteorological Society, 96(12), 2079-2105,

14. Chafik, L., J. Nilsson, Ø. Skagseth, and P. Lundberg (2015), On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean, Journal of Geophysical Research: Oceans, 120(12), 7897-7918,

15. Chafik, L., S. Häkkinen, M. H. England, J. A. Carton, S. Nigam, A. Ruiz-Barradas, A. Hannachi, and L. Miller (2016), Global linkages originating from decadal oceanic variability in the subpolar North Atlantic, Geophysical Research Letters, 43(20), 10,909-10,919,

16. Cokelet, E. D., N. Tervalon, and J. G. Bellingham (2008), Hydrography of the West Spitsbergen Current, Svalbard Branch: Autumn 2001, Journal of Geophysical Research, 113(C1),

17. Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597,

18. Dickson, B., J. Meincke, and P. Rhines (2008), Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, in Arctic-Subarctic Ocean Fluxes, pp. 1-13, Springer Netherlands,

19. Edson, J. B., V. Jampana, R. A. Weller, S. P. Bigorre, A. J. Plueddemann, C. W. Fairall, S. D. Miller, L. Mahrt, D. Vickers, and H. Hersbach (2013), On the Exchange of Momentum over the Open Ocean, Journal of Physical Oceanography, 43(8), 1589-1610,

20. Fahrbach, E. (2006), ASOF-N: Arctic-Subarctic Ocean Flux Array for European Climate: North, contract No: EVK2-CT- 2002-00139; final report.

21. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson (2003), Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm, Journal of Climate, 16(4), 571-591,<0571:bpoasf>;2.

22. Fedorov, A. M., I. L. Bashmachnikov, and T. V. Belonenko (2019), Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling, Vestnik of Saint Petersburg University. Earth Sciences, 64(3), 491-511,

23. Fer, I., A. Bosse, B. Ferron, and P. Bouruet-Aubertot (2018), The Dissipation of Kinetic Energy in the Lofoten Basin Eddy,Journal of Physical Oceanography, 48(6), 1299-1316,

24. Furevik, T., C. Mauritzen, and R. Ingvaldsen (2007), The flow of Atlantic water to the Nordic Seas and Arctic Ocean, in Arctic Alpine Ecosystems and People in a Changing Environment, pp. 123-146, Springer, Berlin, Heidelberg,

25. Gascard, J.-C., and K. A. Mork (2008), Climatic Importance of Large-Scale and Mesoscale Circulation in the Lofoten Basin Deduced from Lagrangian Observations, in Arctic-Subarctic Ocean Fluxes, pp. 131-143, Springer, Dordrecht,

26. Gascard, J.-C., C. Richez, and C. Rouault (1995), New insights on large-scale oceanography in Fram Strait: The West Spitsbergen Current, in Coastal and Estuarine Studies, pp. 131-182, American Geophysical Union,

27. Girs, A. A., and K. V. Kondratovich (1978), Methods of long term weather forecasts (in Russian).

28. Guinehut, S., P. Y. L. Traon, G. Larnicol, and S. Philipps (2004), Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations, Journal of Marine Systems, 46(1-4), 85-98,

29. Guinehut, S., A.-L. Dhomps, G. Larnicol, and P.-Y. L. Traon (2012), High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Science, 8(5), 845-857,

30. Hansen, B., S. Østerhus, W. R. Turrell, S. Jónsson, H. Valdimarsson, H. Hátún, and S. M. Olsen (2008), The Inflow of Atlantic Water, Heat, and Salt to the Nordic Seas Across the Greenland-Scotland Ridge, in Arctic-Subarctic Ocean Fluxes, pp. 15-43, Springer Netherlands,

31. Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynová, J. Kyselý, and O. E. Tveito (2008), Classifications of Atmospheric Circulation Patterns: recent, advances and applications, Annals of the New York Academy of Sciences, 1146(1), 105-152,

32. Jónsson, S., and H. Valdimarsson (2012), Water mass transport variability to the North Icelandic shelf, 1994-2010, ICES Journal of Marine Science, 69(5), 809-815,

33. Jungclaus, J. H., and T. Koenigk (2009), Low-frequency variability of the arctic climate: the role of oceanic and atmospheric heat transport variations, Climate Dynamics, 34(2-3), 265-279,

34. Kalavichchi, K. A., and I. L. Bashmachnikov (2019), Mechanism of a Positive Feedback in Long-Term Variations of the Convergence of Oceanic and Atmospheric Heat Fluxes and of the Ice Cover in the Barents Sea, Izvestiya, Atmospheric and Oceanic Physics, 55(6), 640-649,

35. Kalavichchi, K. A., and I. L. Bashmachnikov (2021), Ocean-Atmosphere Interactions in the Barents Sea from Reanalyses Data, Izvestiya, Atmospheric and Oceanic Physics, 57(2), 159-169,

36. Latarius, K., and D. Quadfasel (2016), Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets, Deep Sea Research Part I: Oceanographic Research Papers, 114, 23-42,

37. Lenn, Y. D., P. J. Wiles, S. Torres-Valdes, E. P. Abrahamsen, T. P. Rippeth, J. H. Simpson, S. Bacon, S. W. Laxon, I. Polyakov, V. Ivanov, and S. Kirillov (2009), Vertical mixing at intermediate depths in the Arctic boundary current, Geophysical Research Letters, 36(5),

38. Lien, V. S., F. B. Vikebø, and Ø. Skagseth (2013), One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic, Nature Communications, 4(1),

39. Makhotin, M. S., and V. V. Ivanov (2016), Circulation of the Atlantic water in the Barents Sea based on hydrological survey data and numerical simulation, in Hydrometeorological Research and Forecasting, vol. 361, pp. 169-191, Hydrometcentre of Russia (in Russian).

40. Moore, G. W. K., I. A. Renfrew, and R. S. Pickart (2012), Spatial distribution of air-sea heat fluxes over the sub-polar North Atlantic Ocean, Geophysical Research Letters, 39(18),

41. Mork, K. A., and J. Blindheim (2000), Variations in the Atlantic inflow to the Nordic Seas, 1955-1996, Deep Sea Research Part I: Oceanographic Research Papers, 47(6), 1035-1057,

42. Mork, K. A., and Ø. Skagseth (2010), A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography, Ocean Science, 6(4), 901-911,

43. Mork, K. A., Ø. Skagseth, and H. Søiland (2019), Recent Warming and Freshening of the Norwegian Sea Observed by Argo Data, Journal of Climate, 32(12), 3695-3705,

44. Muilwijk, M., L. H. Smedsrud, M. Ilicak, and H. Drange (2018), Atlantic Water Heat Transport Variability in the 20th Century Arctic Ocean From a Global Ocean Model and Observations, Journal of Geophysical Research: Oceans, 123(11), 8159-8179,

45. Mulet, S., M.-H. Rio, A. Mignot, S. Guinehut, and R. Morrow (2012), A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements, Deep Sea Research Part II: Topical Studies in Oceanography, 77-80, 70-81,

46. Orvik, K. A., and P. Niiler (2002), Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic, Geophysical Research Letters, 29(19), 1-4,

47. Orvik, K. A., Ø. Skagseth, and M. Mork (2001), Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995-1999, Deep Sea Research Part I: Oceanographic Research Papers, 48(4), 937-957,

48. Pacanowski, R. C., and S. G. H. Philander (1981), Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans, Journal of Physical Oceanography, 11(11), 1443-1451,<1443:povmin>;2.

49. Piechura, J., and W. Walczowski (2009), Warming of the West Spitsbergen Current and sea ice north of Svalbard, OCEANOLOGIA, 51(2), 147-164,

50. Polyakov, I. V., A. V. Pnyushkov, M. B. Alkire, I. M. Ashik, T. M. Baumann, E. C. Carmack, I. Goszczko, J. Guthrie, V. V. Ivanov, T. Kanzow, R. Krishfield, R. Kwok, A. Sundfjord, J. Morison, R. Rember, and A. Yulin (2017), Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean,

51. Poulain, P.-M., A. Warn-Varnas, and P. P. Niiler (1996), Near-surface circulation of the Nordic seas as measured by Lagrangian drifters, Journal of Geophysical Research: Oceans, 101(C8), 18,237-18,258,

52. Prokhorova, U. V., P. N. Svyashchennikov, O. Nordli, K. Isaksen, H. M. Gjetlen, and E. J. Forland (), Investigation spatio temporal variability of atmospheric processes in Arctic regions, in International Scientific and Practical Conference LXIX Herzen Readings April 21-23, 2016, HERZEN UNIVERSITY (in Russian).

53. Raj, R. P., J. E. Ø. Nilsen, J. A. Johannessen, T. Furevik, O. B. Andersen, and L. Bertino (2018), Quantifying Atlantic Water transport to the Nordic Seas by remote sensing, Remote Sensing of Environment, 216, 758-769,

54. Raj, R. P., S. Chatterjee, L. Bertino, A. Turiel, and M. Portabella (2019), The Arctic Front and its variability in the Norwegian Sea, Ocean Science, 15(6), 1729-1744,

55. Raj, R. P., I. Halo, S. Chatterjee, T. Belonenko, M. Bakhoday-Paskyabi, I. Bashmachnikov, A. Fedorov, and J. Xie (2020), Interaction Between Mesoscale Eddies and the Gyre Circulation in the Lofoten Basin, Journal of Geophysical Research: Oceans, 125(7),

56. Rossby, T., C. Flagg, L. Chafik, B. Harden, and H. Søiland (2018), A Direct Estimate of Volume, Heat, and Freshwater Exchange Across the Greenland-Iceland-Faroe-Scotland Ridge, Journal of Geophysical Research: Oceans, 123(10), 7139- 7153,

57. Rudels, B. (1987), On the mass balance of the Polar Ocean, with special emphasis on the Fram Strait, Norsk polarinstitutt, Oslo.

58. Rudels, B. (2015), Arctic Ocean circulation, processes and water masses: A description of observations and ideas with focus on the period prior to the International Polar Year 2007-2009, Progress in Oceanography, 132, 22-67,

59. Rudels, B., U. Schauer, G. Björk, M. Korhonen, S. Pisarev, B. Rabe, and A. Wisotzki (2013), Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s, Ocean Science, 9(1), 147-169,

60. Saloranta, T. M., and P. M. Haugan (2004), Northward cooling and freshening of the warm core of the West Spitsbergen Current, Polar Research, 23(1), 79-88,

61. Schauer, U., and A. Beszczynska-Möller (2009), Problems with estimation and interpretation of oceanic heat transport - conceptual remarks for the case of Fram Strait in the Arctic Ocean, Ocean Science, 5(4), 487-494, 4/os-5-487-2009.

62. Schauer, U., E. Fahrbach, S. Osterhus, and G. Rohardt (2004), Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements, Journal of Geophysical Research, 109(C6),

63. Schauer, U., A. Beszczynska-Möller, W. Walczowski, E. Fahrbach, J. Piechura, and E. Hansen (2008), Variation of Measured Heat Flow Through the Fram Strait Between 1997 and 2006, in Arctic-Subarctic Ocean Fluxes, pp. 65-85, Springer Netherlands,

64. Schlichtholz, P. (2011), Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas, Geophysical Research Letters, 38(5),

65. Schlichtholz, P. (2013), Observational Evidence for Oceanic Forcing of Atmospheric Variability in the Nordic Seas Area, Journal of Climate, 26(9), 2957-2975,

66. Segtnan, O. H., T. Furevik, and A. D. Jenkins (2011), Heat and freshwater budgets of the Nordic seas computed from atmospheric reanalysis and ocean observations, Journal of Geophysical Research: Oceans, 116(C11),

67. Sirevaag, A., and I. Fer (2012), Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing, Journal of Geophysical Research: Oceans, 117(C7),

68. Skagseth, Ø., K. A. Orvik, and T. Furevik (2004), Coherent variability of the Norwegian Atlantic Slope Current derived from TOPEX/ERS altimeter data, Geophysical Research Letters, 31(14),

69. Skagseth, Ø., T. Furevik, R. Ingvaldsen, H. Loeng, K. A. Mork, K. A. Orvik, and V. Ozhigin (2008), Volume and Heat Transports to the Arctic Ocean Via the Norwegian and Barents Seas, in Arctic-Subarctic Ocean Fluxes, pp. 45-64, Springer Netherlands,

70. Skagseth, Ø., K. F. Drinkwater, and E. Terrile (2011), Wind- and buoyancy-induced transport of the Norwegian Coastal Current in the Barents Sea, Journal of Geophysical Research, 116(C8),

71. Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. Nilsen, and Ø. Skagseth (2010), Heat in the Barents Sea: transport, storage, and surface fluxes, Ocean Science, 6(1), 219-234,

72. Smedsrud, L. H., I. Esau, R. B. Ingvaldsen, T. Eldevik, P. M. Haugan, C. Li, V. S. Lien, A. Olsen, A. M. Omar, O. H. Otterå, B. Risebrobakken, A. B. Sandø, V. A. Semenov, and S. A. Sorokina (2013), The role of the Barents Sea in the Arctic climate system, Reviews of Geophysics, 51(3), 415-449,

73. Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192,

74. Timmermann, R., and A. Beckmann (2004), Parameterization of vertical mixing in the Weddell Sea, Ocean Modelling, 6(1), 83-100,

75. Torrence, C., and G. P. Compo (1998), A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, 79(1), 61-78,<0061:apgtwa>;2.

76. Tverberg, V., O. A. Nøst, C. Lydersen, and K. M. Kovacs (2014), Winter sea ice melting in the Atlantic Water subduction area, Svalbard Norway, Journal of Geophysical Research: Oceans, 119(9), 5945-5967,

77. Vangengeim, G. Y. (1933), Application of Synoptic Methods to the Study and Characterization of Climate, Izvestia GGO, 2, 3-16 (in Russian).

78. Verbrugge, N., S. Mulet, S. Guinehut, and B. Buongiorno-Nardelli (2017), ARMOR3D: A 3D multi-observations T,S,U,V product of the ocean, in 19th EGU General Assembly, EGU2017, proceedings from the conference held 23-28 April, 2017, vol. 19, p. 17579, EGU.

79. Vesman, A. V., B. V. Ivanov, and V. A. Volkov (2017), Changes in thermohaline system on the west Spitsbergen shelf since 1950 to present time, Czech Polar Reports, 7(1), 62-73,

80. von Appen, W.-J., U. Schauer, R. Somavilla, E. Bauerfeind, and A. Beszczynska-Möller (2015), Exchange of warming deep waters across Fram Strait, Deep Sea Research Part I: Oceanographic Research Papers, 103, 86-100,

81. Walczowski, W. (2014), Atlantic Water in the Nordic Seas, vol. 13,

82. Wekerle, C., Q. Wang, W.-J. von Appen, S. Danilov, V. Schourup-Kristensen, and T. Jung (2017), Eddy-Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle, Journal of Geophysical Research: Oceans, 122(11), 8385-8405,

Войти или Создать
* Забыли пароль?