Spreading of the Amazon River Plume
Аннотация и ключевые слова
Аннотация (русский):
Results of a joint Russian-Brazilian expedition to study the dynamics of continental river runoff in the ocean associated with the Amazon plume are presented. The stations of the study region covered the seaward part of the Amazon plume. The work was carried out in the dry season (November). The data of in situ measurements and satellite data show that the most desalinated and rich in suspended particulate matter and chlorophyll-a waters were localized on the shallow inner shelf. The horizontal and vertical structure of the thermohaline fields indicates the presence of a well-pronounced river plume about 15 m thick. The decrease in salinity in the plume relative to the background values exceeded 6 PSU even at 300–400 km from the river mouth. The plume waters were characterized by increased concentrations of suspended matter. The best approximation to the in situ measurements is provided by the SMOS satellite salinity data and reanalysis GLORYS12. Chemical determinations in the surface layer in the area of the plume reveal elevated concentrations of silicates, phosphates, and nitrites compared to the seaward part.

Ключевые слова:
Amazon plume, satellite images, CTD casts, chlorophyll-a, frontal zone, suspended particular matter
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Aventura do Brasil (2023), Climate and Best Time to Visit the Amazon, Brazil, https://www.aventuradobrasil.com/info/brazil-climate/amazon/.

2. Barcelona Expert Center (2016), SMOS-BEC Ocean and Land Products Description. BEC-SMOS-0001-PD, Version 1.5.,Technical report.

3. Bondur, V. G. (2004), Aerospace methods in modern oceanology, in New Ideas in Oceanology. Vol. 1. Physics. Chemistry.Biology, pp. 55-117, Nauka, Moscow (in Russian).

4. Bondur, V. G., V. A. Ivanov, V. A. Dulov, Y. N. Goryachkin, V. V. Zamshin, S. I. Kondratiev, M. E. Lee, V. S. Mukhanov, E. E. Sovga, and A. M. Chukharev (2018), Structure and origin of the underwater plume near Sevastopol, Fundamental and Applied Hydrophysics, 11(4), 42-54, https://doi.org/10.7868/S2073667318040068 (in Russian).

5. Bordovsky, O. K., and A. M. Chernyakova (1992), Modern methods of hydrochemical research of the ocean, 201 pp., IO RAN, Moscow.

6. Boyer, T. P., O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, R. A. Locarnini, A. V. Mishonov, C. R. Paver, J. R. Reagan, D. Seidov, I. V. Smolyar, K. W. Weathers, and M. M. Zweng (2018), World Ocean Database 2018, NOAA Atlas NESDIS 87.

7. Chen, D., L. Zeng, K. Boot, and Q. Liu (2022), Satellite Observed Spatial and Temporal Variabilities of Particulate Organic Carbon in the East China Sea, Remote Sensing, 14(8), 1799, https://doi.org/10.3390/rs14081799.

8. Curtin, T. B., and R. V. Legeckis (1986), Physical observations in the plume region of the Amazon River during peak discharge-I. Surface variability, Continental Shelf Research, 6(1-2), 31-51, https://doi.org/10.1016/0278-4343(86)90052-x.

9. Dai, A., and K. E. Trenberth (2002), Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations, Journal of Hydrometeorology, 3(6), 660-687, https://doi.org/10.1175/1525-7541(2002)003<0660:eofdfc>2.0.co;2.

10. Del Vecchio, R. (2004), Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean, Journal of Geophysical Research, 109(C11), https://doi.org/10.1029/2004jc002503.

11. Donlon, C., B. Berruti, A. Buongiorno, M.-H. Ferreira, P. Féménias, J. Frerick, P. Goryl, U. Klein, H. Laur, C. Mavrocordatos, J. Nieke, H. Rebhan, B. Seitz, J. Stroede, and R. Sciarra (2012), The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission, Remote Sensing of Environment, 120, 37-57, https://doi.org/10.1016/j.rse.2011.07.024.

12. Ecuador & Galapagos Insiders (2023), Amazon Rainforest MonthlyWeather and Temperatures, https://galapagosinsiders.com/travel-blog/climate-weather-amazon-rainforest-temperatures/.

13. Fore, A., S. Yueh, W. Tang, and A. Hayashi (2016), SMAP Salinity and Wind Speed Data User’s Guide, Version 3.0, California Institute of Technology.

14. Geyer, W. R., R. C. Beardsley, S. J. Lentz, J. Candela, R. Limeburner, W. E. Johns, B. M. Castro, and I. D. Soares (1996), Physical oceanography of the Amazon shelf, Continental Shelf Research, 16(5-6), 575-616, https://doi.org/10.1016/0278-4343(95)00051-8.

15. Giffard, P., W. Llovel, J. Jouanno, G. Morvan, and B. Decharme (2019), Contribution of the Amazon River Discharge to Regional Sea Level in the Tropical Atlantic Ocean, Water, 11(11), 2348, https://doi.org/10.3390/w11112348.

16. Hu, C., E. Montgomery, R. Schmitt, and F. Mullerkarger (2004), The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: Observation from space and S-PALACE floats, Deep Sea Research Part II: Topical Studies in Oceanography, 51(10-11), 1151-1171, https://doi.org/10.1016/s0967-0645(04)00105-5.

17. Jeffrey, S. W., and G. F. Humphrey (1975), New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochemie und Physiologie der Pflanzen, 167(2), 191-194, https://doi.org/10.1016/s0015-3796(17)30778-3.

18. Jo, Y.-H. (2005), A study of the freshwater discharge from the Amazon River into the tropical Atlantic using multi-sensor data, Geophysical Research Letters, 32(2), https://doi.org/10.1029/2004gl021840.

19. Kurihara, Y. (2020), GCOM-C/SGLI Sea Surface Temperature (SST) ATBD (V.2), https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver2/V2ATBD_O1AB_SST_Kurihara_r1.pdf.

20. Le, C., J. C. Lehrter, C. Hu, H. MacIntyre, and M. W. Beck (2017), Satellite observation of particulate organic carbon dynamics on the Louisiana continental shelf, Journal of Geophysical Research: Oceans, 122(1), 555-569, https://doi.org/10.1002/2016jc012275.

21. Le, C., X. Zhou, C. Hu, Z. Lee, L. Li, and D. Stramski (2018), A Color-Index-Based Empirical Algorithm for Determining Particulate Organic Carbon Concentration in the Ocean From Satellite Observations, Journal of Geophysical Research: Oceans, 123(10), 7407-7419, https://doi.org/10.1029/2018JC014014.

22. Lellouche, J.-M., E. Greiner, R. Bourdallé-Badie, G. Garric, A. Melet, M. Drévillon, C. Bricaud, M. Hamon, O. L. Galloudec, C. Regnier, T. Candela, C.-E. Testut, F. Gasparin, G. Ruggiero, M. Benkiran, Y. Drillet, and P.-Y. L. Traon (2021), The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.698876.

23. Lentz, S. J., and R. Limeburner (1995), The Amazon River Plume during AMASSEDS: Spatial characteristics and salinity variability, Journal of Geophysical Research, 100(C2), 2355, https://doi.org/10.1029/94jc01411.

24. Liang, Y.-C., M.-H. Lo, C.-W. Lan, H. Seo, C. C. Ummenhofer, S. Yeager, R.-J. Wu, and J. D. Steffen (2020), Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region, Nature Communications, 11(1), https://doi.org/10.1038/s41467-020-18187-0.

25. Liu, D., D. Pan, Y. Bai, X. He, D.Wang, J.-A.Wei, and L. Zhang (2015), Remote Sensing Observation of Particulate Organic Carbon in the Pearl River Estuary, Remote Sensing, 7(7), 8683-8704, https://doi.org/10.3390/rs70708683.

26. Lyakhin, Y. I. (1990), Hydrochemistry of tropical regions of the World Ocean, 213 pp., Gidrometeoizdat, Leningrad (in Russian).

27. Magliocca, A. (1971), Some chemical aspects of the marine environment off the Amazon and Pará rivers, Brazil, Boletim do Instituto Oceanográfico, 20(1), 61-84, https://doi.org/10.1590/S0373-55241971000100005.

28. Monin, A. S., and V. V. Gordeev (1988), Amazonia, 217 pp., Nauka, Moscow (in Russian).

29. Muller-Karger, F. E., C. R. McClain, and P. L. Richardson (1988), The dispersal of the Amazon’s water, Nature, 333(6168), 56-59, https://doi.org/10.1038/333056a0.

30. Murakami, H. (2020), ATBD of GCOM-C chlorophyll-a concentration algorithm, https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver2/V2ATBD_O3AB_Chla_Murakami.pdf.

31. NASA Ocean Biology Processing Group (2018), MODIS-TERRA Level 3 Mapped Particulate Organic Carbon Data Version R2018.0, https://doi.org/10.5067/TERRA/MODIS/L3M/POC/2018.

32. NASA Ocean Biology Processing Group (2020a), MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0. PO.DAAC, https://oceancolor.gsfc.nasa.gov/l3/, (dataset accessed: 2022-11-24).

33. NASA Ocean Biology Processing Group (2020b), MODIS Terra Global Level 3 Mapped SST. Ver. 2019.0. PO.DAAC, https://oceancolor.gsfc.nasa.gov/l3/, (dataset accessed: 2022-11-24).

34. NASA Ocean Biology Processing Group (2021), SeaHawk HawkEye Level 1A Data, https://doi.org/10.5067/SEAHAWK/HAWKEYE/L1/1.

35. NASA Ocean Biology Processing Group (2022), Aqua MODIS Level 3 Mapped Particulate Organic Carbon Data, Version R2022.0, https://doi.org/10.5067/AQUA/MODIS/L3M/POC/2022.

36. Nordin, C. F., and R. H. Meade (1985), The Amazon and the Orinoco, in Yearbook of science and technology, pp. 385-390, McGraw-Hill Education.

37. Reynolds, R. W., V. F. Banzon, and NOAA CDR Program (2008), NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2, https://doi.org/10.7289/V5SQ8XB5.

38. Smith,W. O., and D. J. Demaster (1996), Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge, Continental Shelf Research, 16(3), 291-319, https://doi.org/10.1016/0278-4343(95)00007-N.

39. Son, S., and M. Wang (2012), Water properties in Chesapeake Bay from MODIS-Aqua measurements, Remote Sensing of Environment, 123, 163-174, https://doi.org/10.1016/j.rse.2012.03.009.

40. Stramski, D., R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre (2008), Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5(1), 171-201, https://doi.org/10.5194/bg-5-171-2008.

41. Varona, H. L., D. Veleda, M. Silva, M. Cintra, and M. Araujo (2019), Amazon River plume influence on Western Tropical Atlantic dynamic variability, Dynamics of Atmospheres and Oceans, 85, 1-15, https://doi.org/10.1016/j.dynatmoce.2018.10.002.

42. Visbeck, M. (2002), Deep Velocity Profiling Using Lowered Acoustic Doppler Current Profilers: Bottom Track and Inverse Solutions, Journal of Atmospheric and Oceanic Technology, 19(5), 794-807, https://doi.org/10.1175/1520-0426(2002)019<0794:dvpula>2.0.co;2.

43. Wang, M., X. Liu, L. Jiang, and S. Son (2017), The VIIRS Ocean Color Products, Algorithm Theoretical Basis Document, Version 1.0, NOAA STAR.

44. Yu, D., S. Liu, G. Li, Y. Zhong, J. Liang, J. Shi, X. Liu, and X. Wang (2022), The River-Sea Interaction off the Amazon Estuary, Remote Sensing, 14(4), 1022, https://doi.org/10.3390/rs14041022.

Войти или Создать
* Забыли пароль?