Аннотация и ключевые слова
Аннотация (русский):
This paper presents the results of identification of surface manifestations (SM) of short-period internal waves (SIW) in Sentinel-1 A/B synthetic aperture radar (SAR) images of the Kara Gates Strait in August–September 2021. 44 SM of SIW trains were detected in 47 SAR images. Statistics of occurrence, propagation direction and spatial characteristics of SIWs in the study area are given. During two months, satellite observations cover almost all phases of spring-neap tidal cycle. The use of a detailed topography of the study area made it possible to identify certain regions with a more frequent presence of the SIW leading crests with a particular focus made on the shallow (< 100 m) part of the strait. Each identified region is then described in terms of water depth, dimensionless slope, amplitudes of tidal current velocity and properties of SIWs. The obtained results were then compared with the results of previous studies.

Ключевые слова:
short-period internal waves, SAR imaging of sea surface, barotropic tide, spring-neap cycle, Kara Gates Strait, Arctic Ocean
Список литературы

1. Boegman, L., and M. Stastna (2019), Sediment Resuspension and Transport by Internal Solitary Waves, Annual Review of Fluid Mechanics, 51(1), 129-154, https://doi.org/10.1146/annurev-fluid-122316-045049.

2. Carr, M., P. Sutherland, A. Haase, K.-U. Evers, I. Fer, A. Jensen, H. Kalisch, J. Berntsen, E. Părău, Ø. Thiem, and P. A. Davies (2019), Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophysical Research Letters, 46(21), 12,230-12,238, https://doi.org/10.1029/2019GL084710.

3. Czipott, P. V., M. D. Levine, C. A. Paulson, D. Menemenlis, D. M. Farmer, and R. G. Williams (1991), Ice Flexure Forced by Internal Wave Packets in the Arctic Ocean, Science, 254(5033), 832-835, https://doi.org/10.1126/science.254.5033.832.

4. da Silva, J. C. B., and K. R. Helfrich (2008), Synthetic Aperture Radar observations of resonantly generated internal solitary waves at Race Point Channel (Cape Cod), Journal of Geophysical Research: Oceans, 113(C11), https://doi.org/10.1029/2008JC005004.

5. D’Asaro, E. A. (2022), How do Internal Waves Create Turbulence and Mixing in the Ocean?, ESS Open Archive, https://doi.org/10.1002/essoar.10511843.1, (Preprint).

6. Dubina, V. A., and L. M. Mitnik (2007), Internal waves in the Sea of Japan: spatial-temporal distribution and characteristics according to satellite remote sensing data, Issledovanie Zemli iz Kosmosa, 3, 37-46 (in Russian).

7. Edge, W. C., N. L. Jones, M. D. Rayson, and G. N. Ivey (2021), Calibrated Suspended Sediment Observations Beneath Large Amplitude Non-Linear Internal Waves, Journal of Geophysical Research: Oceans, 126(12), https://doi.org/10.1029/2021jc017538.

8. Erofeeva, S., and G. Egbert (2020), Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 kilometer grid, 2018, https://doi.org/10.18739/A21R6N14K.

9. Fer, I., Z. Koenig, I. E. Kozlov, M. Ostrowski, T. P. Rippeth, L. Padman, A. Bosse, and E. Kolås (2020), Tidally Forced Lee Waves Drive Turbulent Mixing Along the Arctic Ocean Margins, Geophysical Research Letters, 47(16), https://doi.org/10.1029/2020gl088083.

10. Garwood, J., R. Musgrave, and A. Lucas (2020), Life in Internal Waves, Oceanography, 33(3), 38-49, https://doi.org/10.5670/oceanog.2020.313.

11. Jackson, C., J. da Silva, and G. Jeans (2012), The Generation of Nonlinear Internal Waves, Oceanography, 25(2), 108-123, https://doi.org/10.5670/oceanog.2012.46.

12. Jackson, C. R. (2004), An atlas of internal solitary-like waves and their properties, 2nd ed., Global Ocean Associates, Alexandria. Jakobsson, M., L. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, H. W. Schenke, Y. Zarayskaya, D. Accettella, A. Armstrong, R. M. Anderson, P. Bienhoff, A. Camerlenghi, I. Church, M. Edwards, J. V. Gardner, J. K. Hall, B. Hell, O. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad, D. Mosher, S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P. Weatherall (2012), The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, 39(12), https://doi.org/10.1029/2012GL052219.

13. Kagan, B. A., and A. A. Timofeev (2015), Spatial variability in the drag coefficient and its role in tidal dynamics and energetics, a case study: The surface M 2 tide in the subsystem of the Barents and Kara Seas, Izvestiya, Atmospheric and Oceanic Physics, 51(1), 98-111, https://doi.org/10.1134/s0001433814060103.

14. Kagan, B. A., E. V. Sofina, and A. A. Timofeev (2018), Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example, Izvestiya, Atmospheric and Oceanic Physics, 54(2), 206-212, https://doi.org/10.1134/s000143381802010x.

15. Konyaev, K. V. (2000), Internal tide at the critical latitude, Izvestiya. Atmospheric and Oceanic Physics, 36(3), 363-375 (in Russian).

16. Kopyshov, I. O., I. E. Kozlov, V. R. Zhuk, A. V. Artamonova, K. P. Silvestrova, O. S. Mekhova, A. I. Korzhenovskaya, D. I. Frey, A. G. Jamalova, P. V. Gaisky, A. A. Osadchiev, and N. B. Stepanova (2021), Study of high-amplitude internal waves in The Kara Gate Straitin August 2021, in X International conference «Marine Research and Education» MARESEDU-2021, vol. 1, pp. 238-241, PoliPRESS, Tver (in Russian).

17. Kozlov, I., V. Kudryavtsev, E. Zubkova, O. Atadzhanova, A. Zimin, D. Romanenkov, A. Myasoedov, and B. Chapron (2015a), SAR observations of internal waves in the Russian Arctic seas, in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, https://doi.org/10.1109/IGARSS.2015.7325923.

18. Kozlov, I. E., and A. V. Kuzmin (2022), New regions of short-period internal wave generation in the Laptev Sea revealed from Sentinel-1 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 19(4), 280-290, https://doi.org/10.21046/2070-7401-2022-19-4-280-290.

19. Kozlov, I. E., V. N. Kudryavtsev, E. V. Zubkova, A. V. Zimin, and B. Chapron (2015b), Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data, Izvestiya, Atmospheric and Oceanic Physics, 51(9), 1073-1087, https://doi.org/10.1134/s0001433815090121.

20. Kudryavtsev, V., I. Kozlov, B. Chapron, and J. A. Johannessen (2014), Quad-polarization SAR features of ocean currents, Journal of Geophysical Research: Oceans, 119(9), 6046-6065, https://doi.org/10.1002/2014jc010173.

21. Lavrova, O. Y., M. I. Mityagina, and K. D. Sabinin (2009), Manifestation of internal waves on the sea surface in the northeastern part of the Black Sea, Issledovanie Zemli iz Kosmosa, (6), 49-55 (in Russian).

22. Lavrova, O. Y., M. I. Mityagina, and K. D. Sabinin (2011), Study of internal wave generation and propagation features in non-tidal seas based on satellite synthetic aperture radar data, Doklady Earth Sciences, 436(3), 165-169 (in Russian).

23. Li, Q., H. Wu, H. Yang, and Z. Zhang (2019), A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait, Acta Oceanologica Sinica, 38(5), 1-9, https://doi.org/10.1007/s13131-019-1437-z.

24. Maxworthy, T. (1979), A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge, Journal of Geophysical Research: Oceans, 84(C1), 338-346, https://doi.org/10.1029/jc084ic01p00338.

25. McClimans, T. A., D. R. Johnson, M. Krosshavn, S. E. King, J. Carroll, and Ø. Grenness (2000), Transport processes in the Kara Sea, Journal of Geophysical Research: Oceans, 105(C6), 14,121-14,139, https://doi.org/10.1029/1999jc000012.

26. Morozov, E., and D. Frey (2023), Strait of Kara Gates: A Region of Strong Internal Tides in the Arctic Seas, Russian Journal of Earth Sciences, 23(3), 1-7, https://doi.org/10.2205/2023es000860.

27. Morozov, E. G., and V. T. Paka (2010), Internal waves in a high-latitude region, Oceanology, 50(5), 668-674, https://doi.org/10.1134/s0001437010050048.

28. Morozov, E. G., and S. V. Pisarev (2002), Internal tides at the Arctic latitudes (numerical experiments), Oceanology, 42(2), 165-173.

29. Morozov, E. G., and S. V. Pisarev (2004), Internal waves and polynya formation in the Laptev Sea, Doklady Earth Sciences, 397(3), 1-4 (in Russian).

30. Morozov, E. G., S. V. Pisarev, and S. Y. Erofeeva (2002), Internal tidal waves in the Arctic seas of Russia, in Surface and internal waves in Arctic seas. Part II. Internal waves in the Arctic seas of Russia, pp. 214-234, Gidrometeoizdat, Saint Petersburg (in Russian).

31. Morozov, E. G., V. G. Neiman, and A. D. Shcherbinin (2003), Internal tide in the Kara Strait, Doklady Earth Sciences, 393(9), 1312-1314. Morozov, E. G., V. T. Paka, and V. V. Bakhanov (2008), Strong internal tides in the Kara Gates Strait, Geophysical Research Letters, 35(16), https://doi.org/10.1029/2008GL033804.

32. Morozov, E. G., I. E. Kozlov, S. A. Shchuka, and D. I. Frey (2017), Internal tide in the Kara Gates Strait, Oceanology, 57(1), 8-18, https://doi.org/10.1134/s0001437017010106.

33. Moum, J. N., D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle (2003), Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf, Journal of Physical Oceanography, 33(10), 2093-2112, https://doi.org/10.1175/1520-0485(2003)0332.0.co;2.

34. Moum, J. N., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth (2007), Energy Transport by Nonlinear Internal Waves, Journal of Physical Oceanography, 37(7), 1968-1988, https://doi.org/10.1175/jpo3094.1.

35. Myslenkov, S., V. Platonov, A. Kislov, K. Silvestrova, and I. Medvedev (2021a), Thirty-Nine-Year Wave Hindcast, Storm Activity, and Probability Analysis of Storm Waves in the Kara Sea, Russia, Water, 13(5), 648, https://doi.org/10.3390/w13050648.

36. Myslenkov, S. A., V. S. Platonov, K. P. Silvestrova, and S. A. Dobrolyubov (2021b), Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data, Doklady Earth Sciences, 498(2), 502-508, https://doi.org/10.1134/s1028334x2106012x.

37. Phillips, O. M. (1980), The Dynamics of the Upper Ocean (Cambridge Monographs on Mechanics), 344 pp., Cambridge University Press. Pineda, J. (1991), Predictable Upwelling and the Shoreward Transport of Planktonic Larvae by Internal Tidal Bores, Science, 253(5019), 548-549, https://doi.org/10.1126/science.253.5019.548.

38. Sabinin, K. D., A. N. Serebryanyi, and A. A. Nazarov (2004), Intensive internal waves in the World Ocean, Oceanology, 44(6), 753-758 (in Russian).

Войти или Создать
* Забыли пароль?