Московский университет им. С.Ю. Витте
Майкопский государственный технологический университет
Майкопский государственный технологический университет
Национальный исследовательский университет «МИЭТ»
Москва, Россия
Тверской государственный университет
Россия
Московский университет им. С.Ю. Витте
Тверской государственный университет
УДК 55 Геология. Геологические и геофизические науки
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
BISAC SCI SCIENCE
The article analyzes histograms of the distribution of the main hydrometeorological parameters of the Caspian Sea for 1980–2021 – air temperature, atmospheric pressure, absolute humidity, atmospheric precipitation and wind speed according to the MERRA-2 atmospheric reanalysis. Histograms were constructed for the entire study region of the Caspian Sea (36◦–48◦N, 45.625◦–55◦E), as well as separately for land and sea areas. The extremeness criteria were calculated based on the normal distribution and the real histogram for all 5 main meteorological parameters. A comparison was made of histograms obtained from MERRA-2 data and from weather station at Derbent located on the coast of the Caspian Sea. Distributions of average monthly wind speed, integral water vapor content and water vapor content in clouds over the Caspian Sea were also constructed according to microwave radiometry (SMMR, SSM/I) data for the time interval 1980–2021.
Caspian Sea, climate, extreme weather events, meteo parameters, weather stations, MERRA-2, SMMR, SSM/I
1. Atlas, R., R. N. Hoffman, S. C. Bloom, J. C. Jusem, and J. Ardizzone (1996), A Multiyear Global Surface Wind Velocity Dataset Using SSM/I Wind Observations, Bulletin of the American Meteorological Society, 77(5), 869-882, https://doi.org/10.1175/1520-0477(1996)0772.0.CO;2.
2. Bulygina, O. N., V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova (2014), Description of an array of urgent data on the main meteorological parameters at Russian stations. Certificate of state registration of the database No 2014620549, http://meteo.ru/data/163-basic-parameters#%D0%BE%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-%D0%BC%D0%B0%D1%81%D1%81%D0%B8%D0%B2%D0%B0-%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85 (in Russian).
3. Chang, P. S., and L. Li (1998), Ocean surface wind speed and direction retrievals from the SSM/I, IEEE Transactions on Geoscience and Remote Sensing, 36(6), 1866-1871, https://doi.org/10.1109/36.729357.
4. Coumou, D., and A. Robinson (2013), Historic and future increase in the global land area affected by monthly heat extremes, Environmental Research Letters, 8(3), 034,018, https://doi.org/10.1088/1748-9326/8/3/034018.
5. Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. da Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao (2017), The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 30(14), 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
6. Greenwald, T. J., G. L. Stephens, T. H. V. Haar, and D. L. Jackson (1993), A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations, Journal of Geophysical Research: Atmospheres, 98(D10), 18,471-18,488, https://doi.org/10.1029/93JD00339.
7. IPCC (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
8. IPCC (2014), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1132 pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
9. IPCC (2021), Climate Change 2021 - The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1132 pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.
10. Jackson, D. L., and G. L. Stephens (1995), A Study of SSM/I-Derived Columnar Water Vapor over the Global Oceans, Journal of Climate, 8(8), 2025-2038, https://doi.org/10.1175/1520-0442(1995)0082.0.CO;2.
11. Karl, T. R., N. Nicholls, and A. Ghazi (1999), CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary, in Weather and Climate Extremes, pp. 3-7, Springer Netherlands, https://doi.org/10.1007/978-94-015-9265-9_2.
12. Kopelevich, O. V., and A. G. Kostianoy (2018), The use of bio-optical parameters of the ocean, derived from satellite data as essential climate variables, Fundamental and Applied Climatology, 3, 8-29, https://doi.org/10.21513/2410-8758-2018-3-8-29 (in Russian).
13. Korn, G., and T. Korn (2000), Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, 1152 pp., Dover Publications.
14. Kostianoy, A. G. (2017a), Satellite monitoring of the ocean climate parameters. Part 1, Fundamental and Applied Climatology, 2, 63-85, https://doi.org/10.21513/2410-8758-2017-2-63-85 (in Russian).
15. Kostianoy, A. G. (2017b), Satellite monitoring of the ocean climate parameters. Part 2, Fundamental and Applied Climatology, 3, 57-64, https://doi.org/10.21513/2410-8758-2017-3-57-64 (in Russian).
16. Kostianoy, A. G., and A. N. Kosarev (Eds.) (2005), The Caspian Sea Environment, Springer Berlin Heidelberg, https://doi.org/10.1007/b138238.
17. Kostianoy, A. G., and S. A. Lebedev (2023), Creation of a regional database of main meteorological parameters of the Caspian Sea for 1980-2022. according to the data of atmospheric reanalysis, in Fundamental and applied aspects of geology, geophysics and geoecology using modern information technologies. VII International Scientific and Practical Conference. Part 1, pp. 196-206, Maykop State Technological University, Republic of Adygeya, Maykop (in Russian).
18. Kostianoy, A. G., A. I. Ginzburg, O. V. Kopelevich, V. N. Kudryavtsev, O. Y. Lavrova, S. A. Lebedev, L. M. Mitnik, M. I. Mityagina, V. G. Smirnov, S. V. Stanichny, and Y. I. Troitskaya (2018), Ocean Remote Sensing in Russia, in Comprehensive Remote Sensing, pp. 284-325, Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.10412-9
19. Kuznetsova, V. N., S. G. Davletshin, and N. V. Shvets (2019), Description of the database “Average monthly relative air humidity at meteorological stations in Russia”, Certificate of state registration of the database No 2019621537, http://meteo.ru/data/790-srednemesyachnaya-otnositelnaya-vlazhnost-vozdukha#%D0%BE%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-%D0%BC%D0%B0%D1%81%D1%81%D0%B8%D0%B2%D0%B0-%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85 (in Russian).
20. Lavigne, T., and C. Liu (2022), Validity of Global Fog-Day Trends Indicated by the Global Surface Summary of the Day (GSOD) Data Set, Journal of Geophysical Research: Atmospheres, 127(10), https://doi.org/10.1029/2021jd035881.
21. Lavrova, O. Y., A. G. Kostianoy, S. A. Lebedev, V. I. Mityagina, A. I. Ginzburg, and N. A. Sheremet (2011), Complex Satellite Monitoring of the Russian Seas, 470 pp., IKI RAS, Moscow (in Russian).
22. Lavrova, O. Y., M. I. Mityagina, and A. G. Kostianoy (2016), Satellite Methods for Detecting and Monitoring Marine Zones of Ecological Risk, 336 pp., IKI RAS, Moscow (in Russian).
23. Lavrova, O. Y., M. I. Mityagina, and A. G. Kostianoy (2022), Satellite methods in the study of the Caspian Sea variability, 250 pp., IKI RAS, Moscow (in Russian).
24. NCDC NESDIS NOAA (2021), Global Surface Summary of the Day (GSOD), https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516, (date of access: 20.08.2023).
25. Roshydromet (2008), Assessment Report on Climate Change and its Consequences on the Territory of the Russian Federation. V. 1. Climate Change, 227 pp., Roshydromet, Moscow (in Russian).
26. Roshydromet (2014), Second Roshydromet Assessment Report on Climate Change and its Consequences in Russian Federation, 1008 pp., Roshydromet, Moscow (in Russian).
27. Roshydromet (2022), The Third Assessment Report on Climate Change and its Consequences on the Territory of the Russian Federation, 227 pp., Roshydromet, St.-Petersburg (in Russian).
28. Shkol’nik, I. M., V. P. Meleshko, S. V. Efimov, and E. N. Stafeeva (2012), Changes in climate extremes on the territory of Siberia by the middle of the 21st century: An ensemble forecast based on the MGO regional climate model, Russian Meteorology and Hydrology, (2), 5-23 (in Russian).
29. Shvets, N. V., V. N. Razuvaev, and L. T. Trofimenko (2018), Description of the data array “Average monthly air pressure at sea level at meteorological stations in Russia”, Certificate of state registration of the database No 2018621521, http://meteo.ru/data/746-srednemesyachnoe-davlenie-vozdukha-na-urovne-morya#%D0%BE%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-%D0%BC%D0%B0%D1%81%D1%81%D0%B8%D0%B2%D0%B0-%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85 (in Russian).
30. Sparks, A. H., T. Hengl, and A. Nelson (2017), GSODR: Global Summary Daily Weather Data in R, The Journal of Open Source Software, 2(10), 177, https://doi.org/10.21105/joss.00177.
31. Tjemkes, S. A., G. L. Stephens, and D. L. Jackson (1991), Spaceborne observation of columnar water vapor: SSMI observations and algorithm, Journal of Geophysical Research: Atmospheres, 96(D6), 10,941-10,954, https://doi.org/10.1029/91JD00272.
32. Volkov, D. S., I. A. Kosolapov, D. A. Grebenikov, and S. A. Lebedev (2023a), Creation of the main meteorological parameters Caspian Sea regional database based on weather station data, in Fundamental and applied aspects of geology, geophysics and geoecology using modern information technologies. VII International Scientific and Practical Conference. Part 1, pp. 58-62, Maykop State Technological University, Republic of Adygeya, Maykop (in Russian).
33. Volkov, D. S., I. A. Kosolapov, D. A. Grebenikov, and S. A. Lebedev (2023b), Creation of the main meteorological parameters Caspian Sea regional database based on satellite microwave radiometry data, in Fundamental and applied aspects of geology, geophysics and geoecology using modern information technologies. VII International Scientific and Practical Conference. Part 1, pp. 63-68, Maykop State Technological University, Republic of Adygeya, Maykop (in Russian).
34. WMO (2007), The role of Climatological Normals in a Changing Climate. WCDMP-No. 61. WMO-TD No. 1377, 130 pp., World Meteorological Organization, Geneva.
35. WMO (2015), Cg-17 Seventeenth World Meteorological Congress. Abridged final report with resolutions. Geneva. 25 May-12 June 2015. WMO-No. 1157, 1171 pp., World Meteorological Organization, Geneva.
36. WMO (2017), WMO Guidelines on the Calculation of Climate Normals. WMO-No. 1203, 29 pp., World Meteorological Organization, Geneva.
37. Zonn, I. S., A. G. Kostianoy, A. N. Kosarev, and M. H. Glantz (2010), The Caspian Sea Encyclopedia, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-11524-0.