Москва, г. Москва и Московская область, Россия
с 01.01.2023 по настоящее время
Москва, г. Москва и Московская область, Россия
ВАК 1.6 Науки о Земле и окружающей среде
УДК 550.394.4 Другого рода перемещения, влияние рельефа, разрушения
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 38.45 Неотектоника
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.06.01 Науки о Земле
ББК 263 Геологические науки
ББК 26 Науки о Земле
ТБК 632 Геофизика
ТБК 63 Науки о Земле. Экология
BISAC SCI019000 Earth Sciences / General
BISAC SCI SCIENCE
The paper presents the results of developing a method for analyzing time series of GNSS measurements based on a machine learning approach. The constructed algorithm was tested on GNSS data from the vicinity of sources of large earthquakes occurred in regions with different tectonic structures: the Japanese islands, Southern California, and the Peruvian-Chilean coast. It is shown that the proposed approach allows one to build an adequate, versatile, interpretable, statistically significant time series model using exclusively statistical data analysis methods, which will further allow one to create automated processing systems operating in a near-real-time mode.
спутниковая геодезия, современные движения и деформации земной поверхности, машинное обучение, анализ временных рядов
1. Alghushairy O., Alsini R., Soule T., et al. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams // Big Data and Cognitive Computing. — 2020. — Vol. 5, no. 1. — https://doi.org/10.3390/bdcc5010001.
2. Altamimi Z., Rebischung P., Collilieux X., et al. ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions // Journal of Geodesy. — 2023. — Vol. 97, no. 5. — https://doi.org/10.1007/s00190-023-01738-w.
3. Altamimi Z., Rebischung P., Metivier L., et al. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions // Journal of Geophysical Research: Solid Earth. — 2016. — Vol. 121, no. 8. — P. 6109–6131. — https://doi.org/10.1002/2016jb013098.
4. Argus D. F., Gordon R. G. and DeMets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame: NNR-MORVEL56 // Geochemistry, Geophysics, Geosystems. — 2011. — Vol. 12, no. 11. — P. 1–13. — https://doi.org/10.1029/2011gc003751.
5. Blazquez-Garciá A., Conde A., Mori U., et al. A Review on Outlier/Anomaly Detection in Time Series Data // ACM Computing Surveys. — 2021. — Vol. 54, no. 3. — P. 1–33. — https://doi.org/10.1145/3444690.
6. Blewitt G., Hammond W. C. and Kreemer C. Harnessing the GPS Data Explosion for Interdisciplinary Science // Eos. — 2018. — Vol. 99. — https://doi.org/10.1029/2018eo104623.
7. Blewitt G., Kreemer C., Hammond W. C., et al. MIDAS robust trend estimator for accurate GPS station velocities without step detection // Journal of Geophysical Research: Solid Earth. — 2016. — Vol. 121, no. 3. — P. 2054–2068. — https://doi.org/10.1002/2015jb012552.
8. Bock Y., Moore A. W., Argus D., et al. Extended Solid Earth Science ESDR System (ES3): Algorithm Theoretical Basis Document, NASA MEaSUREs Project. — SOPAC/CSRC Archive, 2023.
9. Bracewell R. Heaviside’s Unit Step Function, H(x) // The Fourier Transform and Its Applications. — New York : McGrawHill, 2000. — P. 61–65.
10. Crocetti L., Schartner M. and Soja B. Discontinuity Detection in GNSS Station Coordinate Time Series Using Machine Learning // Remote Sensing. — 2021. — Vol. 13, no. 19. — P. 3906. — https://doi.org/10.3390/rs13193906.
11. Fritsch F. N. and Carlson R. E. Monotone Piecewise Cubic Interpolation // SIAM Journal on Numerical Analysis. — 1980. — Vol. 17, no. 2. — P. 238–246.
12. Gabsatarov Yu. V. Analysis of deformation processes in the lithosphere from geodetic measurements based on the example of the San Andreas fault // Geodynamics & Tectonophysics. — 2012. — Vol. 3, no. 3. — P. 275–287. — https://doi.org/10.5800/gt-2012-3-3-0074.
13. Gazeaux J., Williams S., King M., et al. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment // Journal of Geophysical Research: Solid Earth. — 2013. — Vol. 118, no. 5. — P. 2397–2407. — https://doi.org/10.1002/jgrb.50152.
14. Gitis V., Derendyaev A. and Petrov K. Analyzing the Performance of GPS Data for Earthquake Prediction // Remote Sensing. — 2021. — Vol. 13, no. 9. — P. 1842. — https://doi.org/10.3390/rs13091842.
15. Gvishiani A. D., Dobrovolsky M. N., Dzeranov B. V., et al. Big Data in Geophysics and Other Earth Sciences // Izvestiya, Physics of the Solid Earth. — 2022. — Vol. 58. — P. 1–29. — https://doi.org/10.1134/s1069351322010037.
16. Ji K., Shen Y. and Wang F. Signal Extraction from GNSS Position Time Series Using Weighted Wavelet Analysis // Remote Sensing. — 2020. — Vol. 12, no. 6. — P. 992. — https://doi.org/10.3390/rs12060992.
17. Liu F. T., Ting K. M. and Zhou Z.-H. Isolation Forest // 2008 Eighth IEEE International Conference on Data Mining. — Pisa, Italy : IEEE, 2008. — P. 413–422. — https://doi.org/10.1109/icdm.2008.17.
18. Liu T. and Kossobokov V. G. Displacements Before and After Great Earthquakes: Geodetic and Seismic Viewpoints // Pure and Applied Geophysics. — 2021. — Vol. 178, no. 4. — P. 1135–1155. — https://doi.org/10.1007/s00024-021-02694-2.
19. Londschien M., Bühlmann P. and Kovács S. Random Forests for Change Point Detection // Journal of Machine Learning Research. — 2023. — Vol. 24. — P. 1–45.
20. Nikolaidis R. Observation of Geodetic and Seismic Deformation with the Global Positioning System: Ph.D. Thesis. — San Diego : University of California, 2002. — 265 p.
21. Ozbey V., Ergintav S. and Tari E. GNSS Time Series Analysis with Machine Learning Algorithms: A Case Study for Anatolia // Remote Sensing. — 2024. — Vol. 16, no. 17. — P. 3309. — https://doi.org/10.3390/rs16173309.
22. Steblov G. M., Kogan M. G., Levin B. V., et al. Spatially linked asperities of the 2006-2007 great Kuril earthquakes revealed by GPS // Geophysical Research Letters. — 2008. — Vol. 35, no. 22. — https://doi.org/10.1029/2008gl035572.
23. Truong C., Oudre L. and Vayatis N. Selective review of offline change point detection methods // Signal Processing. — 2020. — Vol. 167. — P. 107299. — https://doi.org/10.1016/j.sigpro.2019.107299.
24. Xue X. and Freymueller J. T. Machine Learning for Single-Station Detection of Transient Deformation in GPS Time Series With a Case Study of Cascadia Slow Slip // Journal of Geophysical Research: Solid Earth. — 2023. — Vol. 128, no. 2. — https://doi.org/10.1029/2022jb024859.
25. Yamaga N. and Mitsui Y. Machine Learning Approach to Characterize the Postseismic Deformation of the 2011 TohokuOki Earthquake Based on Recurrent Neural Network // Geophysical Research Letters. — 2019. — Vol. 46, no. 21. — P. 11886–11892. — https://doi.org/10.1029/2019gl084578.
26. Zhang S., Gong L., Zeng Q., et al. Imputation of GPS Coordinate Time Series Using missForest // Remote Sensing. — 2021. — Vol. 13, no. 12. — P. 2312. — https://doi.org/10.3390/rs13122312.




