Mechanical Anthropogenic Impact on Natural Slopes of Coastal Dunes
Аннотация и ключевые слова
Аннотация (русский):
The results of a series of experimental works on controlled human trampling on natural slopes of coastal dunes are summarized. Intensification of anthropogenic impact on coastal dunes, including the growth of local tourism, together with modern climatic changes, leads to degradation of coastal aeolian-marine complexes. The impact of human foot traffic on dune slopes triggers a chain of morphodynamic processes that ultimately lead to sand activation and migration. The morphodynamic effect of human trampling depends on the initial moisture content of the sand and the depth of the dried layer, which expires in streams before reaching the natural slope and leads to a localized change in moisture content due to instantaneous mixing. The morphodynamic effect of multiple successive human descents is to form a trough of disturbed sands, within which there is a slow outflow of dry sand moved by slow displacement. In both cases, the displacement process is similar to that of a “flowing wedge”, where under the action of surface pressure in a local depression there is a correlated movement of particles confined to a region defined by the length of the stress chains. The processes of subsequent relaxation cause the crumbling of microform walls of the footprint formed by the moistened sand layer and the formation of the natural slope in new, “shifted”, conditions.

Ключевые слова:
Coastal dune, Trampling, Dune slopes, Geometric transformation vector, Morphodynamics
Список литературы

1. Acosta A. T. R., Jucker T., Prisco I., et al. Passive Recovery of Mediterranean Coastal Dunes Following Limitations to Human Trampling // Restoration of Coastal Dunes. — Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. — P. 187–198. — https://doi.org/10.1007/978-3-642-33445-0_12.

2. Bannister A., Raymond S. and Baker R. Surveying. Seventh Edition. — Longman, 1998. — 502 p.

3. Belnap J., Phillips S. L., Herrick J. E., et al. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management // Earth Surface Processes and Landforms. — 2007. — Vol. 32, no. 1. — P. 75–84. — https://doi.org/10.1002/esp.1372.

4. Blott S. J. and Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments // Earth Surface Processes and Landforms. — 2001. — Vol. 26, no. 11. — P. 1237–1248. — https://doi.org/10.1002/esp.261.

5. Burvingt O. and Castelle B. Storm response and multi-annual recovery of eight coastal dunes spread along the Atlantic coast of Europe // Geomorphology. — 2023. — Vol. 435. — P. 108735. — https://doi.org/10.1016/j.geomorph.2023.108735.

6. Burvingt O., Masselink G. and Russell P. Classification of beach response to extreme storms // Geomorphology. — 2017. — Vol. 295. — P. 722–737. — https://doi.org/10.1016/j.geomorph.2017.07.022.

7. Charbonneau B. R., Duarte A., Swannack T. M., et al. DOONIES: A process-based ecogeomorphological functional community model for coastal dune vegetation and landscape dynamics // Geomorphology. — 2022. — Vol. 398. — P. 108037. — https://doi.org/10.1016/j.geomorph.2021.108037.

8. Chu J., Leroueil S. and Leong W. K. Unstable behaviour of sand and its implication for slope instability // Canadian Geotechnical Journal. — 2003. — Vol. 40, no. 5. — P. 873–885. — https://doi.org/10.1139/t03-039.

9. Cogoni D., Calderisi G., Collu D., et al. Tourist Trampling on a Peripheral Plant Population Restricted to an Urban Natural Area in the Capo Sant’Elia Promontory (Sardinia, W-Mediterranean Basin) // Plants. — 2024. — Vol. 13, no. 6. — P. 881. — https://doi.org/10.3390/plants13060881.

10. Danchenkov A. and Belov N. Comparative Analysis of the Unmanned Aerial Vehicles and Terrestrial Laser Scanning Application for Coastal Zone Monitoring // Russian Journal of Earth Sciences. — 2023. — Vol. 23. — ES4008. — https://doi.org/10.2205/2023es000854.

11. Danchenkov A., Belov N., Bubnova E., et al. Foredune defending role: Vulnerability and potential risk through combined satellite and hydrodynamics approach // Remote Sensing Applications: Society and Environment. — 2023. — Vol. 30. — P. 100934. — https://doi.org/10.1016/j.rsase.2023.100934.

12. Danchenkov A., Belov N. and Stont Z. Using the terrestrial laser scanning technique for aeolian sediment transport assessment in the coastal zone in seasonal scale // Estuarine, Coastal and Shelf Science. — 2019. — Vol. 223. — P. 105–114. — https://doi.org/10.1016/j.ecss.2019.04.044.

13. Danchenkov A. R. and Belov N. S. Morphological changes in the beach-foredune system caused by a series of storms. Terrestrial laser scanning evaluation // Russian Journal of Earth Sciences. — 2019. — Vol. 19, no. 4. — ES4003. — https://doi.org/10.2205/2019ES000665.

14. Defeo O., McLachlan A., Schoeman D. S., et al. Threats to sandy beach ecosystems: A review // Estuarine, Coastal and Shelf Science. — 2009. — Vol. 81, no. 1. — P. 1–12. — https://doi.org/10.1016/j.ecss.2008.09.022.

15. Delgado-Fernandez I. and Davidson-Arnott R. Meso-scale aeolian sediment input to coastal dunes: The nature of aeolian transport events // Geomorphology. — 2011. — Vol. 126, no. 1/2. — P. 217–232. — https://doi.org/10.1016/j.geomorph.2010.11.005.

16. Durán O. and Moore L. J. Vegetation controls on the maximum size of coastal dunes // Proceedings of the National Academy of Sciences. — 2013. — Vol. 110, no. 43. — P. 17217–17222. — https://doi.org/10.1073/pnas.1307580110.

17. Eelsalu M., Parnell K. E. and Soomere T. Sandy beach evolution in the low-energy microtidal Baltic Sea: Attribution of changes to hydrometeorological forcing // Geomorphology. — 2022. — Vol. 414. — P. 108383. — https://doi.org/10.1016/j.geomorph.2022.108383.

18. Fenu G., Cogoni D., Ulian T., et al. The impact of human trampling on a threatened coastal Mediterranean plant: The case of Anchusa littorea Moris (Boraginaceae) // Flora - Morphology, Distribution, Functional Ecology of Plants. — 2013. — Vol. 208, no. 2. — P. 104–110. — https://doi.org/10.1016/j.flora.2013.02.003.

19. Folk R. L. and Ward W. C. Brazos River bar [Texas]; a study in the significance of grain size parameters // Journal of Sedimentary Research. — 1957. — Vol. 27, no. 1. — P. 3–26. — https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.

20. Hesp P., Schmutz P., Martinez M. M., et al. The effect on coastal vegetation of trampling on a parabolic dune // Aeolian Research. — 2010. — Vol. 2, no. 2/3. — P. 105–111. — https://doi.org/10.1016/j.aeolia.2010.03.001.

21. Hesp P. A. The Formation of Deflation Ridges // Marine Geology. — 2024. — Vol. 475. — P. 107367. — https://doi.org/10.1016/j.margeo.2024.107367.

22. Husemann P., Romão F., Lima M., et al. Review of the Quantification of Aeolian Sediment Transport in Coastal Areas // Journal of Marine Science and Engineering. — 2024. — Vol. 12, no. 5. — P. 755. — https://doi.org/10.3390/jmse12050755.

23. Liddle M. J. and Greig-Smith P. A Survey of Tracks and Paths in a Sand Dune Ecosystem I. Soils // The Journal of Applied Ecology. — 1975. — Vol. 12, no. 3. — P. 893–908. — https://doi.org/10.2307/2402097.

24. Mather A. S. and Ritchie W. The beaches of the Highlands and Islands of Scotland. — Countryside Commission for Scotland, 1977.

25. Moskalewicz D., Bahr F., Janowski Ł., et al. Morphology and internal structure of small-scale washovers formed in the coastal zone of the semi-enclosed tideless basin, Gulf of Gdańsk, Baltic Sea // Geomorphology. — 2024. — Vol. 463. — P. 109368. — https://doi.org/10.1016/j.geomorph.2024.109368.

26. Nordstrom K. F. Beaches and Dunes of Developed Coasts. — Cambridge University Press, 2000. — https://doi.org/10.1017/CBO9780511549519.

27. Pessoa M. F. and Lidon F. C. Impact of human activities on coastal vegetation ? A review // Emirates Journal of Food and Agriculture. — 2013. — Vol. 25, no. 12. — https://doi.org/10.9755/ejfa.v25i12.16730.

28. Pinna M. S., Bacchetta G., Cogoni D., et al. Is vegetation an indicator for evaluating the impact of tourism on the conservation status of Mediterranean coastal dunes? // Science of The Total Environment. — 2019. — Vol. 674. — P. 255–263. — https://doi.org/10.1016/j.scitotenv.2019.04.120.

29. Ravichandran K. and Rashid R. A. A review of recreational trampling impact on nature trail // Universiti Putra Malaysia. — 2017. — Vol. 10, no. 2. — P. 2–7.

30. Sibson R. A brief description of natural neighbour interpolation // Interpreting multivariate data. — John Wiley & Sons, 1981. — P. 21–36.

31. Stont Z. I., Bobykina V. P. and Ulyanova M. O. "Diving" cyclones and consequences of their impact on the coasts of the South-Eastern Baltic Sea // Russian Journal of Earth Sciences. — 2023a. — Vol. 23, no. 2. — ES2001. — https://doi.org/10.2205/2023ES000827.

32. Stont Z. I., Esiukova E. E. and Ulyanova M. O. Clusters of Cyclones and Their Effect on Coast Abrasion in Kaliningrad Region // Russian Journal of Earth Sciences. — 2023b. — Vol. 23, no. 3. — ES3008. — https://doi.org/10.2205/2023es000826.

33. Williams R. DEMs of difference // Geomorphological techniques. — 2012. — Vol. 2, no. 3.2.


Войти или Создать
* Забыли пароль?