A New Version of Parametrization of Orographic Waves: Dynamic and Thermal Effects in the SOCOL3 Model
Аннотация и ключевые слова
Аннотация (русский):
Orographic gravity waves (OGW) have a significant impact on the global atmospheric circulation, providing the transfer of energy and momentum within the atmospheric layers from the surface to the lower thermosphere. Most modern numerical models of the global climate, due to the specifics of the problems being solved, are not able to resolve the atmospheric wave of the meso- and lower scale on their spatial grid. Therefore, various parameterization schemes for wave effects are developed to take into account the impact of OGW. This study is devoted to a detailed description of the new version of the OGW parameterization created on the basis of solving the wave energy balance equation taking into account the Earth rotation. The new version of the parameterization was implemented into the chemistry-climate model SOCOL3 and numerical experiments were carried out using both the previous and the new versions of the parameterization. It is shown, in particular, that the new version of the OGW parameterization allows for more detailed calculation of wave accelerations and heat inflows, especially in the lower stratosphere, while the OGWs propagate to greater heights of the thermosphere than in the previous parameterization, which better corresponds to observations. As a result, this allows us to obtain more realistic profiles of the mean wind and temperature calculated by the model SOCOL3 with the new parameterization, and the possibilities for fine-tuning the new parameterization provide a significant expansion of a range of scenarios for numerical experiments.

Ключевые слова:
Orographic gravity waves, mesoscale atmospheric waves, subgrid scale orography, wave drag, wave heating rates, atmospheric circulation
Список литературы

1. Alexander M. J., Geller M., McLandress C., et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models // Quarterly Journal of the Royal Meteorological Society. — 2010. — Vol. 136, no. 650. — P. 1103–1124. — https://doi.org/10.1002/qj.637.

2. Andrews D. G., Holton J. R. and Leovy C. B. Middle atmosphere dynamics. — New York, USA : Academic Press, 1987. — 483 p.

3. Baines P. G. and Palmer T. N. Rationale for a new physically-based parametrization of subgrid-scale orographic effects // Technical memorandum. — 1990. — No. 169. — https://doi.org/10.21957/H4H36B3U.

4. Butchart N. The Brewer-Dobson circulation // Reviews of Geophysics. — 2014. — Vol. 52, no. 2. — P. 157–184. — https://doi.org/10.1002/2013rg000448.

5. Catry B., Geleyn J., Bouyssel F., et al. A new sub-grid scale lift formulation in a mountain drag parameterisation scheme // Meteorologische Zeitschrift. — 2008. — Vol. 17, no. 2. — P. 193–208. — https://doi.org/10.1127/0941-2948/2008/0272.

6. Charney J. G. and Drazin P. G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // Journal of Geophysical Research. — 1961. — Vol. 66, no. 1. — P. 83–109. — https://doi.org/10.1029/jz066i001p00083.

7. Dunn-Sigouin E. and Shaw T. Dynamics of Anomalous Stratospheric Eddy Heat Flux Events in an Idealized Model // Journal of the Atmospheric Sciences. — 2020. — Vol. 77, no. 6. — P. 2187–2202. — https://doi.org/10.1175/jas-d-19-0231.1. EDN: https://elibrary.ru/PGZRQY

8. Durran D. R. Mountain Waves and Downslope Winds // Atmospheric Processes over Complex Terrain. — American Meteorological Society, 1990. — P. 59–81. — https://doi.org/10.1007/978-1-935704-25-6_4.

9. Egorova T. A., Rozanov E. V., Zubov V. A., et al. Model for investigating ozone trends (MEZON) // Izvestiya, Atmospheric and Oceanic Physics. — 2003. — Vol. 39, no. 3. — P. 277–292. EDN: https://elibrary.ru/LHYFIT

10. Fritts D. C., Vosper S. B., Williams B. P., et al. Large-Amplitude Mountain Waves in the Mesosphere Accompanying Weak Cross-Mountain Flow During DEEPWAVE Research Flight RF22 // Journal of Geophysical Research: Atmospheres. — 2018. — Vol. 123, no. 18. — P. 9992–10022. — https://doi.org/10.1029/2017JD028250.

11. Fritts D. C., Wang L., Taylor M. J., et al. Large-Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 2. Nonlinear Dynamics, Wave Breaking, and Instabilities // Journal of Geophysical Research: Atmospheres. — 2019. — Vol. 124, no. 17/18. — P. 10006–10032. — https://doi.org/10.1029/2019jd030899.

12. Gavrilov N. M. Parametrization of the dynamical and thermal effect of steadystate internal gravity waves on the middle atmosphere // Izvestiya Atmospheric and Oceanic Physics. — 1989. — Vol. 25, no. 3. — P. 271–278. — (In Russian).

13. Gavrilov N. M. and Koval A. V. Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics // Izvestiya, Atmospheric and Oceanic Physics. — 2013. — Vol. 49, no. 3. — P. 244–251. — https://doi.org/10.1134/s0001433813030067. EDN: https://elibrary.ru/RFJBWZ

14. Gavrilov N. M., Koval A. V., Pogoreltsev A. I., et al. Numerical simulation of the response of general circulation of the middle atmosphere to spatial inhomogeneities of orographic waves // Izvestiya, Atmospheric and Oceanic Physics. — 2013. — Vol. 49, no. 4. — P. 367–374. — https://doi.org/10.1134/S0001433813040038. EDN: https://elibrary.ru/RFOUOJ

15. Gavrilov N. M., Koval A. V., Pogoreltsev A. I., et al. Simulating influences of QBO phases and orographic gravity wave forcing on planetary waves in the middle atmosphere // Earth, Planets and Space. — 2015. — Vol. 67, no. 1. — https://doi.org/10.1186/s40623-015-0259-2. EDN: https://elibrary.ru/UGHIVR

16. Gavrilov N. M., Koval A. V., Pogoreltsev A. I., et al. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios // Advances in Space Research. — 2018. — Vol. 61, no. 7. — P. 1819–1836. — https://doi.org/10.1016/j.asr.2017.08.022. EDN: https://elibrary.ru/XXVXJR

17. Gavrilov N. M. and Kshevetskii S. P. Numerical modeling of the propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere // Izvestiya, Atmospheric and Oceanic Physics. — 2014. — Vol. 50, no. 1. — P. 66–72. — https://doi.org/10.1134/s0001433813050046. EDN: https://elibrary.ru/SKPGDH

18. Gavrilov N. M. and Popov A. A. Modeling Seasonal Variations in the Intensity of Internal Gravity Waves in the Lower Thermosphere // Izvestiya, Atmospheric and Oceanic Physics. — 2022. — Vol. 58, no. 1. — P. 68–79. — https://doi.org/10.1134/s0001433822010030. EDN: https://elibrary.ru/QZGFPV

19. Geleyn J. F., Balize E., Bougeault P., et al. Atmospheric parametrization schemes in Meteo-France’s ARPEGE N.W.P. model // Seminar on Parametrization of Sub-grid Scale Physical Processes. — ECMWF, 1994. — P. 385–402.

20. Gossard E. E. and Hooke W. H. Waves in the atmosphere. Atmospheric Infrasound and Gravity Waves - their Generation and Propagation. — Amsterdam, Oxford, NY : Elsevier Scientific Publishing Company, 1975. — 456 p.

21. Hájková D. and Šácha P. Parameterized orographic gravity wave drag and dynamical effects in CMIP6 models // Climate Dynamics. — 2023. — Vol. 62, no. 3. — P. 2259–2284. — https://doi.org/10.1007/s00382-023-07021-0. EDN: https://elibrary.ru/OGKODL

22. Heale C. J., Bossert K., Vadas S. L., et al. Secondary Gravity Waves Generated by Breaking Mountain Waves Over Europe // Journal of Geophysical Research: Atmospheres. — 2020. — Vol. 125, no. 5. — https://doi.org/10.1029/2019JD031662. EDN: https://elibrary.ru/RHCYZA

23. Hegglin M. I., Lamarque J. F. and Eyring V. The IGAC/SPARC Chemistry-Climate Model Initiative Phase-1 (CCMI-1) model data output. — 2015. — URL: https://catalogue.ceda.ac.uk/uuid/9cc6b94df0f4469d8066d69b5df879d5/ (visited on 01/15/2025).

24. Hoffmann L., Xue X. and Alexander M. J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations // Journal of Geophysical Research: Atmospheres. — 2013. — Vol. 118, no. 2. — P. 416–434. — https://doi.org/10.1029/2012jd018658. EDN: https://elibrary.ru/DRZLBR

25. Iwasaki T., Yamada S. and Tada K. A Parameterization Scheme of Orographic Gravity Wave Drag with Two Different Vertical Partitionings: Part I: Impacts on Medium-Range Forecasts // Journal of the Meteorological Society of Japan. Ser. II. — 1989. — Vol. 67, no. 1. — P. 11–27. — https://doi.org/10.2151/jmsj1965.67.1_11.

26. Jucker M. Scaling of Eliassen-Palm flux vectors // Atmospheric Science Letters. — 2021. — Vol. 22, no. 4. — https://doi.org/10.1002/asl.1020. EDN: https://elibrary.ru/DSSFIC

27. Kaifler B., Kaifler N., Ehard B., et al. Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere // Geophysical Research Letters. — 2015. — Vol. 42, no. 21. — P. 9488–9494. — https://doi.org/10.1002/2015GL066465.

28. Koval A. V., Chen W., Didenko K. A., et al. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events // Annales Geophysicae. — 2021. — Vol. 39, no. 2. — P. 357–368. — https://doi.org/10.5194/angeo-39-357-2021. EDN: https://elibrary.ru/LGIXDT

29. Koval A. V., Gavrilov N. M., Kandieva K. K., et al. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Scientific Reports. — 2022. — Vol. 12, no. 1. — https://doi.org/10.1038/s41598-022-26311-x. EDN: https://elibrary.ru/JZUBKU

30. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., et al. Numerical simulation of the mean meridional circulation in the middle atmosphere at different phases of stratospheric warmings and mountain wave scenarios // Journal of Atmospheric and Solar-Terrestrial Physics. — 2019a. — Vol. 183. — P. 11–18. — https://doi.org/10.1016/j.jastp.2018.12.012. EDN: https://elibrary.ru/WUEVRI

31. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., et al. Reactions of the Middle Atmosphere Circulation and Stationary Planetary Waves on the Solar Activity Effects in the Thermosphere // Journal of Geophysical Research: Space Physics. — 2019b. — Vol. 124, no. 12. — P. 10645–10658. — https://doi.org/10.1029/2019ja027392. EDN: https://elibrary.ru/YRJBJB

32. Koval A. V., Gavrilov N. M., Zubov V. A., et al. Modified Parameterization Scheme of Orographic Gravity Waves in the SOCOL Chemistry-Climate Model // Pure and Applied Geophysics. — 2024. — Vol. 182, no. 1. — P. 255–270. — https://doi.org/10.1007/s00024-024-03619-5. EDN: https://elibrary.ru/SWKHCA

33. Lilly D. K. and Kennedy P. J. Observations of a Stationary Mountain Wave and its Associated Momentum Flux and Energy Dissipation // Journal of the Atmospheric Sciences. — 1973. — Vol. 30, no. 6. — P. 1135–1152. — https://doi.org/10.1175/1520-0469(1973)030<1135:ooasmw>2.0.co;2.

34. Lott F. and Miller M. J. A new subgrid-scale orographic drag parametrization: Its formulation and testing // Quarterly Journal of the Royal Meteorological Society. — 1997. — Vol. 123, no. 537. — P. 101–127. — https://doi.org/10.1002/qj.49712353704.

35. McFarlene N. The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere // Journal of the Atmospheric Sciences. — 1987. — Vol. 44, no. 14. — P. 1775–1800. — https://doi.org/10.1175/1520-0469(1987)044<1775:teooeg>2.0.co;2.

36. Niekerk A. van, Sandu I. and Vosper S. B. The Circulation Response to Resolved Versus Parametrized Orographic Drag Over Complex Mountain Terrains // Journal of Advances in Modeling Earth Systems. — 2018. — Vol. 10, no. 10. — P. 2527–2547. — https://doi.org/10.1029/2018ms001417.

37. Niekerk A. van, Sandu I., Zadra A., et al. COnstraining ORographic Drag Effects (COORDE): A Model Comparison of Resolved and Parametrized Orographic Drag // Journal of Advances in Modeling Earth Systems. — 2020. — Vol. 12, no. 11. — https://doi.org/10.1029/2020ms002160. EDN: https://elibrary.ru/LHXDMS

38. NOAA National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2) v2. — 2006. — https://doi.org/10.7289/V5J1012Q.

39. Roeckner E., Bäuml G., Bonaventura L., et al. Report No 349. The atmospheric general circulation model ECHAM5. Part I. Model description. — Hamburg, Germany : Max Planck Institute for Meteorology, 2003.

40. Schraner M., Rozanov E., Schnadt Poberaj C., et al. Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes // Atmospheric Chemistry and Physics. — 2008. — Vol. 8, no. 19. — P. 5957–5974. — https://doi.org/10.5194/acp-8-5957-2008. EDN: https://elibrary.ru/OHEJTV

41. Scinocca J. F. and McFarlane N. A. The parametrization of drag induced by stratified flow over anisotropic orography // Quarterly Journal of the Royal Meteorological Society. — 2000. — Vol. 126, no. 568. — P. 2353–2393. — https://doi.org/10.1002/qj.49712656802.

42. Smith R. B., Woods B. K., Jensen J., et al. Mountain Waves Entering the Stratosphere // Journal of the Atmospheric Sciences. — 2008. — Vol. 65, no. 8. — P. 2543–2562. — https://doi.org/10.1175/2007jas2598.1.

43. Smith S., Baumgardner J. and Mendillo M. Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere // Geophysical Research Letters. — 2009. — Vol. 36, no. 8. — https://doi.org/10.1029/2008gl036936.

44. Stenke A., Schraner M., Rozanov E., et al. The SOCOL version 3.0 chemistry-climate model: description, evaluation, and implications from an advanced transport algorithm // Geoscientific Model Development. — 2013. — Vol. 6, no. 5. — P. 1407–1427. — https://doi.org/10.5194/gmd-6-1407-2013. EDN: https://elibrary.ru/RJEXZL

45. Swinbank R. and O’Neill A. A Stratosphere-Troposphere Data Assimilation System // Monthly Weather Review. — 1994. — Vol. 122, no. 4. — P. 686–702. — https://doi.org/10.1175/1520-0493(1994)122<0686:astdas>2.0.co;2.

46. Tables of Physical Quantities / ed. by I. K. Kikoin. — Moscow : Atomizdat, 1976. — P. 272–279. — (In Russian).

47. Webster S., Brown A. R., Cameron D. R., et al. Improvements to the representation of orography in the Met Office Unified Model // Quarterly Journal of the Royal Meteorological Society. — 2003. — Vol. 129, no. 591. — P. 1989–2010. — https://doi.org/10.1256/qj.02.133.

48. Zadra A., Roch M., Laroche S., et al. The subgrid-scale orographic blocking parametrization of the GEM Model // Atmosphere-Ocean. — 2003. — Vol. 41, no. 2. — P. 155–170. — https://doi.org/10.3137/ao.410204.

49. Zhao M., Golaz J. C., Held I. M., et al. The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies // Journal of Advances in Modeling Earth Systems. — 2018. — Vol. 10, no. 3. — P. 735–769. — https://doi.org/10.1002/2017ms001209. EDN: https://elibrary.ru/YGUFHN


Войти или Создать
* Забыли пароль?