с 01.01.1985 по настоящее время
Институт динамики геосфер РАН
Махачкала, Республика Дагестан, Россия
Томский государственный университет (Факультет естественных наук)
Москва, г. Москва и Московская область, Россия
с 01.01.1994 по настоящее время
Дагестанский государственный институт народного хозяйства
Махачкала, Республика Дагестан, Россия
Дагестанский государственный институт народного хозяйства
Махачкала, Республика Дагестан, Россия
УДК 532.685 Движение жидкостей в пористых телах
УДК 532.71 Осмос
УДК 551.34 Мерзлотоведение. Действие мороза на горные породы и почвы. Многолетняя мерзлота
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
A mathematical model has been formulated to describe the degradation of saline permafrost containing ice, gas hydrate accumulations, and free gas, as a result of climate warming and the influence of heat flow from below, considering the effects of osmosis. The degradation rates of hydrate-bearing permafrost from above and below, along with the corresponding rates of methane release into the surrounding permeable fractured-porous medium and gas migration channels or faults, have been studied. To investigate degradation from above, several temperature values at the upper boundary of the frozen layer were considered, including both positive and negative values in degrees Celsius. This allowed for the separate assessment of the contributions of heat and salinity to the degradation rates, as well as to evaluate the role of osmotic forces. To investigate degradation from below, several values of heat flow caused by the geothermal gradient were considered. As an application of the model, the results of calculations for the degradation rates of the frozen hydrate-bearing layer, following the onset of ocean transgression on the Arctic shelf approximately 10 thousand years ago, are presented.
permafrost, gas hydrate, ice melting, degradation, solutions, osmosis, mathematical model
1. Are F. E., Grigoriev M. N., Hubberten H.-W., et al. Comparative shore face evolution along the Laptev Sea coast // Polarforschung. — 2000. — Vol. 70. — P. 135–150.
2. Arzhanov M. M., Malakhova V. V. and Mokhov I. I. Modeling thermal regime and evolution of the methane hydrate stability zone of the Yamal peninsula permafrost // Permafrost and Periglacial Processes. — 2020. — Vol. 31, no. 4. — P. 487–496. — https://doi.org/10.1002/ppp.2074.
3. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic // Arctic: Ecology and Economy. — 2021. — Vol. 11, no. 1. — P. 51–66. — https://doi.org/10.25283/2223-4594-2021-1-51-66. — (In Russian).
4. Chuvilin E., Ekimova V., Bukhanov B., et al. Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling // Geosciences. — 2019. — Vol. 9, no. 4. — P. 188–206. — https://doi.org/10.3390/geosciences9040188.
5. Frederick J. M. and Buffett B. A. Taliks in relict submarine permafrost and methane hydrate deposits: Pathways for gas escape under present and future conditions // Journal of Geophysical Research: Earth Surface. — 2014. — Vol. 119, no. 2. — P. 106–122. — https://doi.org/10.1002/2013jf002987.
6. Harrison W. D. and Osterkamp T. E. A Coupled Heat and Salt Transport Model for Subsea Permafrost. — Geophysical Institute Report No. UAG R-247, University of Alaska, 1976.
7. Istomin V. A. and Yakushev V. S. Gas Hydrates in Natural Conditions. — Moscow : Nedra, 1992. — 235 p. — EDN: https://elibrary.ru/YSOMOR ; (in Russian).
8. Kizyakov A., Zimin M., Sonyushkin A., et al. Comparison of Gas Emission Crater Geomorphodynamics on Yamal and Gydan Peninsulas (Russia), Based on Repeat Very-High-Resolution Stereopairs // Remote Sensing. — 2017. — Vol. 9, no. 10. — P. 1023. — https://doi.org/10.3390/rs9101023.
9. Lobkovskii L. I., Nikiforov S. L., Shakhova N. E., et al. Mechanisms responsible for degradation of submarine permafrost on the eastern arctic shelf of Russia // Doklady Earth Sciences. — 2013. — Vol. 449, no. 1. — P. 280–283. — https://doi.org/10.1134/S1028334X13030124.
10. Lobkovsky L. I., Baranov A. A., Ramazanov M. M., et al. Possible Seismogenic-Trigger Mechanism of Methane Emission, Glacier Destruction and Climate Warming in the Arctic and Antarctic // Izvestiya, Physics of the Solid Earth. — 2023. — Vol. 59, no. 3. — P. 364–376. — https://doi.org/10.1134/s1069351323030084.
11. Lobkovsky L. I. and Ramazanov M. M. Thermomechanical Waves in the Elastic Lithosphere-Viscous Asthenosphere System // Fluid Dynamics. — 2021. — Vol. 56, no. 6. — P. 765–779. — https://doi.org/10.1134/s0015462821060100.
12. Lobkovsky L. I., Ramazanov M. M., Semiletov I. P., et al. Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone // Geosciences. — 2022. — Vol. 12, no. 9. — P. 345. — https://doi.org/10.3390/geosciences12090345.
13. Malakhova V. V. and Golubeva E. N. Estimation of the permafrost stability on the East Arctic shelf under the extreme climate warming scenario for the XXI century // Ice and Snow. — 2016. — Vol. 56, no. 1. — P. 61–72. — https://doi.org/10.15356/2076-6734-2016-1-61-72. — (In Russian).
14. Morgado A. M. O., Rocha L. A. M., Cartwright J. H. E., et al. Osmosis Drives Explosions and Methane Release in Siberian Permafrost // Geophysical Research Letters. — 2024. — Vol. 51, no. 18. — e2024GL108987. — https://doi.org/10.1029/2024gl108987.
15. Neuzil C. E. Osmotic generation of ’anomalous’ fluid pressures in geological environments // Nature. — 2000. — Vol. 403, no. 6766. — P. 182–184. — https://doi.org/10.1038/35003174.
16. Osterkamp T. A. Sub-sea Permafrost // Encyclopedia of Ocean Sciences / ed. by J. Steele, K. Turekian and S. Thorpe. — Massachusetts : Elsevier, 2001. — P. 559–569. — https://doi.org/10.1016/b978-012374473-9.00008-4.
17. Osterkamp T. E. and Gosink G. P. Variations in permafrost thickness in response to changes in paleoclimate // Journal of Geophysical Research: Solid Earth. — 1991. — Vol. 96, B3. — P. 4423–4434. — https://doi.org/10.1029/90jb02492.
18. Ramazanov M., Bulgakova N. and Lobkovsky L. Mathematical Model of Freezing of Rocks Saturated With Salt Solution Taking Into Account the Influence of Osmosis // Russian Journal of Earth Sciences. — 2023. — Vol. 23, no. 5. — ES5007. — https://doi.org/10.2205/2023es000857.
19. Ramazanov M. M. Mathematical Model of Filtration of Solutions in a Porous Medium with Semipermeable Inclusions. Osmotic Convection // Journal of Engineering Physics and Thermophysics. — 2023. — Vol. 96, no. 3. — P. 823–833. — https://doi.org/10.1007/s10891-023-02744-7.
20. Ramazanov M. M., Bulgakova N. S., Gadzhimagomedova S. R., et al. Nonlinear Problem of Filtration Convection of a Salt Solution Caused by the Osmotic Effect // Journal of Applied Mechanics and Technical Physics. — 2025a. — Vol. 66, no. 1. — P. 32–44. — https://doi.org/10.1134/s0021894425010122.
21. Ramazanov M. M., Bulgakova N. S., Lobkovsky L. I., et al. Dissociation Kinetics of Methane Hydrate in Frozen Rocks under Decreasing External Pressure: Mathematical and Experimental Modeling // Doklady Earth Sciences. — 2024a. — Vol. 516, no. 2. — P. 1028–1035. — https://doi.org/10.1134/s1028334x24601391.
22. Ramazanov M. M., Bulgakova N. S. and Lobkovsky L. I. Mathematical Criterion for the Formation of Cryopags during the Freezing of Rocks Saturated with Salt Solution // Doklady Rossijskoj akademii nauk. Fizika, tehničeskie nauki. — 2024b. — Vol. 515, no. 2. — P. 59–66. — https://doi.org/10.31857/s2686740024020094. — (In Russian).
23. Ramazanov M. M., Bulgakova N. S. and Lobkovsky L. I. Degradation patterns of hydrate-containing permafrost rocks: modeling taking into account the osmotic effect // Prikladnaya mekhanika i tekhnicheskaya fizika. — 2025b. — 4(392). — P. 129–143. — https://doi.org/10.15372/PMTF202415575. — (In Russian).
24. Ramazanov M. M., Karakin A. V. and Lobkovskiy L. I. Mathematical Model for the Motion of Solutions Taking into Account the Osmotic Effect // Doklady Earth Sciences. — 2019. — Vol. 489, no. 1. — P. 1306–1309. — https://doi.org/10.1134/s1028334x19110060.
25. Romanovskii N. N., Hubberten H.-W., Gavrilov A. V., et al. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo-Marine Letters. — 2005. — Vol. 25, no. 2/3. — P. 167–182. — https://doi.org/10.1007/s00367-004-0198-6.
26. Ruppel C. D. Methane hydrates and contemporary climate change // Nature Education Knowledge. — 2011. — Vol. 3, no. 10.
27. Semiletov I. P. and Shakhova N. E. Greenhouse gases balance and climate change: Role of permafrost degradation in the Arctic // Vestnik of the Far East Branch of the Russian Academy of Sciences. — 2024. — 4(236). — P. 5–43. — https://doi.org/10.31857/S0869769824040015. — EDN: https://elibrary.ru/IRWLDY ; (in Russian).
28. Sergienko V. I., Lobkovskii L. I., Semiletov I. P., et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the "Methane Catastrophe": some results ofintegrated studies in 2011 // Doklady Earth Sciences. — 2012. — Vol. 446, no. 1. — P. 1132–1137. — https://doi.org/10.1134/s1028334x12080144.
29. Shakhova N., Semiletov I., Gustafsson O., et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf // Nature Communications. — 2017. — Vol. 8, no. 1. — https://doi.org/10.1038/ncomms15872.
30. Shakhova N., Semiletov I., Salyuk A., et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf // Journal of Geophysical Research: Oceans. — 2010. — Vol. 115, no. C8. — P. C08007. — https://doi.org/10.1029/2009jc005602.
31. Streletskaya I. D. and Leibman M. O. Cryogeochemical interrelation of massive ground ice, cryopegs, and enclosing deposits of Central Yama // Kriosfera Zemli. — 2002. — Vol. 6, no. 3. — P. 15–24. — (In Russian).
32. Tsypkin G. G. Flows with Phase Transitions in Porous Media. — Moscow : Fizmatlit, 2009. — 232 p. — (In Russian).
33. Vasiliev V. I., Maksimov A. M., Petrov E. E., et al. Heat and Mass Transfer in Freezing and Thawing Soils. — Moscow : Nauka, 1996. — 224 p. — (In Russian).
34. Yakushev V. S. Natural gas and gas hydrates in permafrost. — Moscow : VNIIGAZ, 2009. — 192 p. — EDN: https://elibrary.ru/OTRYFK ; (in Russian).
35. Yakushev V. S., Gafarov N. A., Karnaukhov S. M., et al. Gas hydrates in the Arctic and the World Ocean: features of occurrence and development prospects. — Moscow : Nedra, 2014. — 251 p. — EDN: https://elibrary.ru/VNKPSF ; (in Russian).



