Abstract and keywords
Abstract (English):
Distributed Acoustic Sensing (DAS) is a rapidly developing technology that has already been successfully applied to solve various problems in geology, geophysics, and geoecology. Its advantages include unprecedentedly high spatial resolution, covering areas of up to a hundred kilometers or more; high sensitivity; and a broad frequency range. High-quality ice cover monitoring requires a dense network of seismic sensors. DAS can serve as an excellent complement to observation networks based on traditional seismic instruments. An expensive interrogator remains in a safe location (e.g., onshore), while the optical fiber can be considered expendable. In this article, we discuss the current state of the problem, describe our experiment conducted in February 2024 on the ice of the Klyazma reservoir, and share some conclusions and recommendations.

Keywords:
Distributed Acoustic Sensing, monitoring system, parallel recording, ice thickness, Young’s modulus
Text
Text (PDF): Read Download
References

1. Abrahams L., Mierzejewski J., Dunham E., et al. Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves // Seismica. — 2023. — Vol. 2, no. 1. — https://doi.org/10.26443/seismica.v2i1.213.

2. Acharya A. and Kogure T. Application of novel distributed fibre-optic sensing for slope deformation monitoring: a comprehensive review // International Journal of Environmental Science and Technology. — 2022. — Vol. 20, no. 7. — P. 8217–8240. — https://doi.org/10.1007/s13762-022-04697-5.

3. Barrias A., Casas J. R. and Villalba S. A. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications // Sensors. — 2016. — Vol. 16, no. 5. — P. 748. — https://doi.org/10.3390/s16050748.

4. Bird E., Atterholt J., Li J., et al. Constraining Dike Opening Models With Seismic Velocity Changes Associated With the 2023-2024 Eruption Sequence on the Reykjanes Peninsula // AGU Advances. — 2025. — Vol. 6, no. 1. — https://doi.org/10.1029/2024av001516.

5. Buzin I. V., Klyachkin S. V., Frolov S. V., et al. Compression of the ice cover in the Pechora Sea: a natural phenomenon and its impact on marine operations // Arctic: Ecology and Economy. — 2022. — Vol. 12, no. 4. — P. 500–512. — https://doi.org/10.25283/2223-4594-2022-4-500-512. — (In Russian).

6. Castongia E., Wang H. F., Lord N., et al. An Experimental Investigation of Distributed Acoustic Sensing (DAS) on Lake Ice // Journal of Environmental and Engineering Geophysics. — 2017. — Vol. 22, no. 2. — P. 167–176. — https://doi.org/10.2113/jeeg22.2.167.

7. Chien C.-C., Gerstoft P., Hatfield W., et al. Calibrating Strain Measurements: A Comparative Study of DAS, Strainmeter, and Seismic Data // Earth and Space Science. — 2025. — Vol. 12, no. 2. — https://doi.org/10.1029/2024ea003940.

8. Chugaev A. V. and Kuznetsov A. I. Evaluation of the Capabilities of Distributed Acoustic Sensing with a Helical Fiber for Cross-Well Seismic Survey // Instruments and Experimental Techniques. — 2023. — Vol. 66, no. 5. — P. 868–874. — https://doi.org/10.1134/s0020441223050081.

9. Fichtner A., Klaasen S., Thrastarson S., et al. Fiber-Optic Observation of Volcanic Tremor through Floating Ice Sheet Resonance // The Seismic Record. — 2022. — Vol. 2, no. 3. — P. 148–155. — https://doi.org/10.1785/0320220010.

10. Gorshkov B. G., Yuksel K., Fotiadi A. A., et al. Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective // Sensors. — 2022. — Vol. 22, no. 3. — P. 1033. — https://doi.org/10.3390/s22031033.

11. Harmon N., Porter R., Rychert C., et al. Distributed Acoustic Sensing for Future Planetary Applications: Initial Results From the San Francisco Volcanic Field, a Lunar Analogue // Earth and Space Science. — 2024. — Vol. 11, no. 12. — https://doi.org/10.1029/2024ea003640.

12. Hu J. and Wang Y. Wellbore fluid flow velocity calculation based on distributed acoustic sensing data // Journal of Geophysics and Engineering. — 2025. — Vol. 22, no. 3. — P. 799–809. — https://doi.org/10.1093/jge/gxaf014.

13. INNOTER. Monitoring of the Northern Sea Route. — 2025. — URL: https://innoter.com/articles/monitoring-severnogomorskogo-puti/ (visited on 07/30/2025) ; (in Russian).

14. Jena J., Mahed G., Chabata T., et al. Monitoring and early warning detection of collapse and subsidence sinkholes using an optical fibre seismic sensor // Cogent Engineering. — 2024. — Vol. 11, no. 1. — https://doi.org/10.1080/23311916.2023.2301152.

15. Johansen T. A., Ruud B. O., Tømmerbakke R., et al. Seismic on floating ice: data acquisition versus flexural wave noise // Geophysical Prospecting. — 2019. — Vol. 67, no. 3. — P. 532–549. — https://doi.org/10.1111/1365-2478.12756.

16. Katakami S., Korenaga M., Iwata N., et al. Immediate and High-Precision Hypocentral Determination for Earthquake Early Warning Applications Using Distributed Acoustic Sensing // Bulletin of the Seismological Society of America. — 2024. — Vol. 115, no. 1. — P. 174–190. — https://doi.org/10.1785/0120240184.

17. Kennett B. L. N., Lai V. H., Miller M. S., et al. Near-source effects on DAS recording: implications for tap tests // Geophysical Journal International. — 2024. — Vol. 237, no. 1. — P. 436–444. — https://doi.org/10.1093/gji/ggae055.

18. Kislov K. V. and Gravirov V. V. Distributed Acoustic Sensing: A New Tool or a New Paradigm // Seismic Instruments. — 2022. — Vol. 58, no. 5. — P. 485–508. — https://doi.org/10.3103/s0747923922050085.

19. Kislov K. V. and Gravirov V. V. Overview of promising applications of distributed acoustic sensing // Science and Technological Developments. — 2023. — Vol. 102, no. 4. — P. 4–37. — https://doi.org/10.21455/std2023.4-1. — (In Russian).

20. Kleine F., Bruland C., Wüstefeld A., et al. Seismic Signal Classification of Snow Avalanches using Distributed Acoustic Sensing in Grasdalen, Western Norway/ Preprint // Natural Hazards and Earth System Sciences Discussions. — 2024. — https://doi.org/10.5194/nhess-2024-202.

21. Kovalev S. M., Smirnov V. N., Borodkin V. A., et al. Physical and Mechanical Characteristics of Sea Ice in the Kara and Laptev Seas // International Journal of Offshore and Polar Engineering. — 2019. — Vol. 29, no. 4. — P. 369–374. — https://doi.org/10.17736/ijope.2019.jc767.

22. Krylov A. A., Novikov M. A., Kovachev S. A., et al. Features of Seismological Observations in the Arctic Seas // Journal of Marine Science and Engineering. — 2023. — Vol. 11, no. 12. — P. 2221. — https://doi.org/10.3390/jmse11122221.

23. Kubyshkin N. V., Buzin I. V., Golovin N. V., et al. Aspects of ice engineering for the aims of construction of the transport infrastructure and reconnaissance drilling in the Arctic // Arctic and Antarctic Research. — 2018. — Vol. 64, no. 4. — P. 407–426. — https://doi.org/10.30758/0555-2648-2018-64-4-407-426. — (In Russian).

24. Landrø M., Bouffaut L., Kriesell H. J., et al. Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable // Scientific Reports. — 2022. — Vol. 12, no. 1. — P. 19226. — https://doi.org/10.1038/s41598-022-23606-x.

25. Makhsidov V. V., Smirnov O. I., Razomasov N. D., et al. Structural health monitoring of natural and artificial structures based on ice (review) // Proceedings of VIAM. — 2020. — No. 3. — P. 111–118. — https://doi.org/10.18577/2307-6046-2020-0-3-111-118. — (In Russian).

26. Malygin I. V. and Aleshin I. M. Forecasting Ice Jams on the Lena River Using Machine Learning Methods // Izvestiya, Atmospheric and Oceanic Physics. — 2022. — Vol. 58, no. 10. — P. 1218–1225. — https://doi.org/10.1134/s0001433822100061.

27. Marsan D., Weiss J., Larose E., et al. Sea-ice thickness measurement based on the dispersion of ice swell // The Journal of the Acoustical Society of America. — 2012. — Vol. 131, no. 1. — P. 80–91. — https://doi.org/10.1121/1.3662051.

28. Marsan D., Weiss J., Moreau L., et al. Characterizing horizontally-polarized shear and infragravity vibrational modes in the Arctic sea ice cover using correlation methods // The Journal of the Acoustical Society of America. — 2019. — Vol. 145, no. 3. — P. 1600–1608. — https://doi.org/10.1121/1.5094343.

29. Mikhailov M. I., Muzalevskiy K. V. and Mironov V. L. Ice thickness measurements at freshwater lake and river using GLONASS and GPS signals // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2017. — Vol. 14, no. 2. — P. 167–174. — https://doi.org/10.21046/2070-7401-2017-14-2-167-174. — (In Russian).

30. Mironov Ye. U., Klyachkin S. V., Smolyanitsky V. M., et al. Current state and perspectives of ice cover studies in the Russian Arctic seas // Russian Arctic. — 2020. — No. 10. — P. 13–29. — https://doi.org/10.24411/2658-4255-2020-12102. — (In Russian).

31. Moreau L., Weiss J. and Marsan D. Accurate Estimations of Sea-Ice Thickness and Elastic Properties From Seismic Noise Recorded With a Minimal Number of Geophones: From Thin Landfast Ice to Thick Pack Ice // Journal of Geophysical Research: Oceans. — 2020. — Vol. 125, no. 11. — e2020JC016492. — https://doi.org/10.1029/2020jc016492.

32. Nziengui-Bâ D., Coutant O., Moreau L., et al. Measuring the thickness and Young’s modulus of the ice pack with DAS, a test case on a frozen mountain lake // Geophysical Journal International. — 2022. — Vol. 233, no. 2. — P. 1166–1177. — https://doi.org/10.1093/gji/ggac504.

33. Ouellet S. M., Dettmer J., Lato M. J., et al. Previously hidden landslide processes revealed using distributed acoustic sensing with nanostrain-rate sensitivity // Nature Communications. — 2024. — Vol. 15, no. 1. — P. 6239. — https://doi.org/10.1038/s41467-024-50604-6.

34. Peña Castro A. F., Schmandt B., Baker M. G., et al. Tracking Local Sea Ice Extent in the Beaufort Sea Using Distributed Acoustic Sensing and Machine Learning // The Seismic Record. — 2023. — Vol. 3, no. 3. — P. 200–209. — https://doi.org/10.1785/0320230019.

35. Presnov D. A., Sobisevich A. L. and Shurup A. S. Determination of Ice Cover Parameters Using Seismoacoustic Noise // Acoustical Physics. — 2023. — Vol. 69, no. 5. — P. 725–737. — https://doi.org/10.1134/s1063771023600341.

36. Presnov D. A., Spiridonov E. P., Kostenko M. V., et al. Method for seismoacoustic monitoring of ice cover parameters // Science and Technological Developments. — 2025. — Vol. 104, no. 1. — P. 50–62. — https://doi.org/10.21455/std2025.1-3. — EDN: https://elibrary.ru/YGSTYJ ; (in Russian).

37. Quinn M., Doran A. K., Coclin C., et al. Freshwater Thin Ice Sheet Monitoring and Imaging with Fiber Optic Distributed Acoustic Sensing // Glacies. — 2025. — Vol. 2, no. 3. — P. 7. — https://doi.org/10.3390/glacies2030007.

38. Rashid A., Tackie-Otoo B. N., Latiff A. H. Abdul, et al. Research Advances on Distributed Acoustic Sensing Technology for Seismology // Photonics. — 2025. — Vol. 12, no. 3. — P. 196. — https://doi.org/10.3390/photonics12030196.

39. SAFE Project. Tsunami early warning system using available seafloor fiber cables: Aragon Photonics. — 2025. — URL: https://aragonphotonics.com/safe-project/ (visited on 07/30/2025).

40. Serripierri A., Moreau L., Boue P., et al. Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard // The Cryosphere. — 2022. — Vol. 16, no. 6. — P. 2527–2543. — https://doi.org/10.5194/tc-16-2527-2022.

41. Smith M. M., Thomson J., Baker M. G., et al. Observations of Ocean Surface Wave Attenuation in Sea Ice Using Seafloor Cables // Geophysical Research Letters. — 2023. — Vol. 50, no. 20. — https://doi.org/10.1029/2023gl105243.

42. Song Z., Zeng X., Ni S., et al. Near Real-Time In Situ Monitoring of Nearshore Ocean Currents Using Distributed Acoustic Sensing on Submarine Fiber-Optic Cable // Earth and Space Science. — 2024. — Vol. 11, no. 9. — https://doi.org/10.1029/2024ea003572.

43. Stepanyuk I. A. and Smirnov V. N. Methods of measuring the characteristics of ice cover dynamics. — St. Petersburg : Gidrometeoizdat, 2001. — 136 p. — (In Russian).

44. Sun S., Su Y., Cao D., et al. Subsurface structure assessment for landfill using distributed acoustic sensing: A case study in Qingdao, China // Journal of Applied Geophysics. — 2025. — Oct. — Vol. 241. — P. 105855. — https://doi.org/10.1016/j.jappgeo.2025.105855.

45. Sutherland G. and Rabault J. Observations of wave dispersion and attenuation in landfast ice // Journal of Geophysical Research: Oceans. — 2016. — Vol. 121, no. 3. — P. 1984–1997. — https://doi.org/10.1002/2015JC011446.

46. T8 Sensor. Distributed acoustic sensor Dunay. — 2025. — URL: https://en.t8-sensor.ru (visited on 07/30/2025).

47. Tarasov A. S. Modeling of ice jams in riverbeds (review) // Ice and Snow. — 2020. — Vol. 60, no. 1. — P. 121–133. — https://doi.org/10.31857/s2076673420010028. — (In Russian).

48. Tertyshnikov K., Yurikov A., Bona A., et al. 3D DAS VSP for Coal Seam Exploration: A Case Study from Queensland, Australia // Sensors. — 2024. — Vol. 24, no. 8. — P. 2561. — https://doi.org/10.3390/s24082561.

49. Turquet A., Wuestefeld A., Svendsen G. K., et al. Automated Snow Avalanche Monitoring and Alert System Using Distributed Acoustic Sensing in Norway // GeoHazards. — 2024. — Vol. 5, no. 4. — P. 1326–1345. — https://doi.org/10.3390/geohazards5040063.

50. Vinogradov Y. A., Fedorov A. V., Baranov S. V., et al. Identification of iceberg-forming ice quakes from seismic and infrasound data // Ice and Snow. — 2021. — Vol. 61, no. 2. — P. 262–270. — https://doi.org/10.31857/S2076673421020087. — (In Russian).

51. Walter F., Gräff D., Lindner F., et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain // Nature Communications. — 2020. — Vol. 11, no. 1. — https://doi.org/10.1038/s41467-020-15824-6.

52. Xie J., Zeng X., Liang C., et al. Ice plate deformation and cracking revealed by an in situ-distributed acoustic sensing array // The Cryosphere. — 2024. — Vol. 18, no. 2. — P. 837–847. — https://doi.org/10.5194/tc-18-837-2024.

53. Xie J., Zeng X., Ni S., et al. Using distributed fiber optic sensing data to invert for the properties of the ice layer // Chinese Journal of Geophysics. — 2025. — Vol. 68, no. 1. — P. 153–163. — https://doi.org/10.6038/cjg2024R0583. — (In Chinese).

54. Yanovskaya T. B. and Koroleva T. Y. The velocity structure of the upper mantle in the transition zone from the East European Platform to Western Europe from seismic noise data // Izvestiya, Physics of the Solid Earth. — 2012. — Vol. 48, no. 7/8. — P. 555–561. — https://doi.org/10.1134/s1069351312060080.

55. You S., Feng G., Qian X., et al. Distributed Fiber Optic Sensing for Fracture Geometry Inversion Using All Time Steps Data // Sensors. — 2025. — Vol. 25, no. 14. — P. 4290. — https://doi.org/10.3390/s25144290.

56. Zhang H. J., Zhang Y. X., Xiong J. J., et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice // Journal of Experiments in Fluid Mechanics. — 2023. — Vol. 37, no. 2. — P. 68–77. — https://doi.org/10.11729/syltlx20210170. — (In Chinese).


Login or Create
* Forgot password?