Vector-Based Seismic Decomposition by Reverse Time Methods
Abstract and keywords
Abstract (English):
The paper analyzes the decomposition of the initial seismic data by the methods of wave reversal in time when constructing seismic attributes. Within the framework of a formal approach to decomposition, as a mapping of data from one space into data of a larger dimension, a classification of existing seismic survey methods is given. Separation of the stage of decomposition in seismic data processing makes it possible to streamline the existing directions of research in this area of seismic exploration. The vector decomposition, which is the basis of a new method of seismic data processing Reverse Time Holography (RTH), is analyzed in detail. The RTH method includes, as a special case, the depth migration method, the offset reflection amplitude analysis method, the acoustic inversion method, and is an alternative to the migration-based velocity estimation method and the full wave inversion method. A close connection between the technique of wavefront time reversal in seismic exploration and analogous time reversal in optics and acoustics is noted. The variety of deep seismic attributes obtained in the RTH method based on vector decomposition makes it possible to solve a wide range of practical problems of prospecting and developing hydrocarbon deposits at a new qualitative level. The RTH method has been successfully tested at 21 hydrocarbon fields in various oil and gas provinces of the Russian Federation.

Keywords:
seismic, time reverse, scattering, seismic attributes, migration, decomposition
Text
Text (PDF): Read Download
References

1. Alali A., Tanushev N., Tsingas C. Depth Velocity Model Building on Blended Data Via Beam Tomography // 83rd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2022. P. 1-5. DOI:https://doi.org/10.3997/2214-4609.202210594

2. Albertin U., Sava P., Etgen J. et al. Adjoint wave-equation velocity analysis // SEG Technical Program Expanded Abstracts 2006. Society of Exploration Geophysicists, 2006. P. 3345-3349. DOI:https://doi.org/10.1190/1.2370226

3. Alekseev A. S., Erokhin G. N. Integration in geophysical inverse problems (Integrated Geophysics) // USSR Academy of Sciences Proceedings. 1989. V. 308, № 6. P. 1-6.

4. Alkhalifah T. Scattering-angle based filtering of the waveform inversion gradients // Geophysical Journal International. 2015. V. 200, № 1. P. 363-373. DOI:https://doi.org/10.1093/gji/ggu379

5. Anikonov Y. E., Bubnov B. A., Erokhin G. N. Inverse and Ill-Posed Sources Problems. Berlin, Boston: DE GRUYTER, 1997. P. 239. DOI:https://doi.org/10.1515/9783110969412

6. Baysal E., Kosloff D. D., Sherwood J. W. C. Reverse time migration // GEOPHYSICS. 1983. V. 48, № 11. P. 1514-1524. DOI:https://doi.org/10.1190/1.1441434

7. Biondi B., Sava P. Wave-equation migration velocity analysis // SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. P. 1723-1726. DOI:https://doi.org/10.1190/1.1820867.

8. Erokhin G. Reverse time holography approach based on the vector domain common image gathers // SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, 2019. P. 4107-4111. DOI:https://doi.org/10.1190/segam2019-3201622.1

9. Erokhin G. Time-dependent scattering in reverse time holography method // 83rd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2022. P. 1-5. DOI:https://doi.org/10.3997/2214-4609.202210094

10. Erokhin G., Bryksin V. High-resolution velocity model estimation by the RTH method // SEG Technical Program Expanded Abstracts 2020. Society of Exploration Geophysicists, 2020. P. 2863-2867. DOI:https://doi.org/10.1190/segam2020-3410422.1

11. Erokhin G., Danilin A., Kozlov M. Extension of the common image gathers by VPRTM method // SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018. P. 4438-4442. DOI:https://doi.org/10.1190/segam2018-2995971.1

12. Erokhin G., Pestov L., Danilin A. et al. Interconnected vector pairs image conditions: New possibilities for visualization of acoustical media // SEG Technical Program Expanded Abstracts 2017. - Society of Exploration Geophysicists, 2017. P. 4624-4629. DOI:https://doi.org/10.1190/segam2017-17587902.1

13. Fink M. Time Reversed Acoustics // Physics Today. 1997. V. 50, № 3. P. 34-40. DOI:https://doi.org/10.1063/1.881692

14. Guan H., Williamson P., Denel B. et al. Angle-domain common-image gathers extracted from pre-stack RTM images // SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 2013. P. 3767-3772. DOI:https://doi.org/10.1190/segam2013-1149.1

15. Khaidukov V., Landa E., Moser T. J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution // GEOPHYSICS. 2004. V. 69, № 6. P. 1478-1490. DOI:https://doi.org/10.1190/1.1836821

16. Koren Z., Ravve I. Full-azimuth subsurface angle domain wavefield decomposition and imaging Part I: Directional and reflection image gathers // GEOPHYSICS. 2011. V. 76, № 1. S1-S13. DOI:https://doi.org/10.1190/1.3511352

17. Kremlev A. N., Erokhin G. N., Starikov L. E. et al. Fracture and cavernous reservoirs prospecting by the CSP prestack migration method // 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. EAGE Publications BV, 2011. DOI:https://doi.org/10.3997/2214-4609.20148996

18. Landa E., Shtivelman V., Gelchinsky B. A method for detection of diffracted waves on common-offset sections // Geophysical Prospecting. 1987. V. 35, № 4. P. 359-373. DOI:https://doi.org/10.1111/j.1365-2478.1987.tb00823.x

19. Landau L. D., Lifshitz E. M. Fluid Mechanics. 2nd ed. Pergamon Books Ltd., 1987. P. 532.

20. McMechan G. A. Migration by extrapolation of time-dependent boundary values // Geophysical Prospecting. 1983. V. 31, № 3. P. 413-420. DOI:https://doi.org/10.1111/j.1365-2478.1983.tb01060.x

21. Moser T. J., Howard C. B. Diffraction imaging in depth // Geophysical Prospecting. 2008. V. 56, № 5. P. 627-641. DOI:https://doi.org/10.1111/j.1365-2478.2007.00718.x

22. Mosher C. C., Foster D. J. Common angle imaging conditions for pre-stack depth migration // SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000. P. 830-833. DOI:https://doi.org/10.1190/1.1816200

23. Plessix R.-E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications // Geophysical Journal International. 2006. V. 167, № 2. P. 495-503. DOI:https://doi.org/10.1111/j.1365-246x.2006.02978.x

24. Popovici A. M., Sturzu I., Moser T. J. High Resolution Diffraction Imaging of Small Scale Fractures in Shale and Carbonate Reservoirs // 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. DOI:https://doi.org/10.1190/sbgf2015-153

25. Ren L., Liu G., Meng X. et al. Suppressing Artifacts in 2D RTM Using the Poynting Vector // Near Surface Geophysics Asia Pacific Conference, Beijing, China 17-19 July 2013. Society of Exploration Geophysicists, Australian Society of Exploration Geophysicists, Chinese Geophysical Society, Korean Society of Earth, Exploration Geophysicists, Society of Exploration Geophysicists of Japan, 2013. P. 484-487. DOI:https://doi.org/10.1190/nsgapc2013-112

26. Rosales D. A., Biondi B. Converted-waves angle-domain common-image gathers // SEG Technical Program Expanded Abstracts 2005. Society of Exploration Geophysicists, 2005. P. 959-962. DOI:https://doi.org/10.1190/1.2148320

27. Sava P., Fomel S. Time-shift imaging condition in seismic migration // GEOPHYSICS. 2006. V. 71, № 6. S209-S217. DOI:https://doi.org/10.1190/1.2338824

28. Sava P. C., Biondi B., Etgen J. Wave-equation migration velocity analysis by focusing diffractions and reflections // GEOPHYSICS. 2005. V. 70, № 3. U19-U27. DOI:https://doi.org/10.1190/1.1925749

29. Stolk C. C., Hoop M. V. D., Root T. J. P. M. O. Inverse scattering of seismic data in the reverse time migration (RTM) approach // Proceedings of the Project Review. V. 1. Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN), 2009. P. 91-108.

30. Tanushev N., Popovici A. M., Hardesty S. Fast, high-resolution beam tomography and velocity-model building // The Leading Edge. 2017. V. 36, № 2. P. 140-145. DOI:https://doi.org/10.1190/tle36020140.1

31. Tarantola A. Inversion of seismic reflection data in the acoustic approximation // GEOPHYSICS. 1984. V. 49, № 8. P. 1259-1266. DOI:https://doi.org/10.1190/1.1441754

32. Virieux J., Operto S. An overview of full-waveform inversion in exploration geophysics // GEOPHYSICS. 2009. V. 74, № 6. P. 1-26. DOI:https://doi.org/10.1190/1.3238367

33. Vyas M., Nichols D., Mobley E. Efficient RTM angle gathers using source directions // SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. P. 3104-3108. DOI:https://doi.org/10.1190/1.3627840

34. Wang W., McMechan G. A. Vector-based elastic reverse time migration // GEOPHYSICS. 2015. V. 80, № 6. P. 245-258. DOI:https://doi.org/10.1190/geo2014-0620.1

35. Whitmore N. D. Iterative depth migration by backward time propagation // SEG Technical Program Expanded Abstracts 1983. Society of Exploration Geophysicists, 1983. P. 382-385. DOI:https://doi.org/10.1190/1.1893867

36. Whitmore N. D., Crawley S. Applications of RTM inverse scattering imaging conditions // SEG Technical Program Expanded Abstracts 2012. 2012. P. 1-6. DOI:https://doi.org/10.1190/segam2012-0779.1

37. Xie X.-B. An angle-domain wavenumber filter for multi-scale full-waveform inversion // SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015. P. 1132-1137. DOI:https://doi.org/10.1190/segam2015-5877023.1

38. Xie X.-B., Wu R.-S. Extracting angle domain information from migrated wavefield // SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. P. 1360-1363. DOI:https://doi.org/10.1190/1.1816910

39. Yan R., Guan H., Xie X.-B. et al. Acquisition aperture correction in the angle domain toward true-reflection reverse time migration // GEOPHYSICS. 2014. V. 79, № 6. P. 241-250. DOI:https://doi.org/10.1190/geo2013-0324.1

40. Yan R., Xie X.-B. A new angle-domain imaging condition for prestack reverse-time migration // SEG Technical Program Expanded Abstracts 2009. - Society of Exploration Geophysicists, 2009. P. 2784-2788. DOI:https://doi.org/10.1190/1.3255427

41. Yilmaz O. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data (Investigations in Geophysics, No. 10). Society of Exploration. P. 2027.

42. Yoon K., Marfurt K. J. Reverse-time migration using the Poynting vector // Exploration Geophysics. 2006. V. 37, № 1. P. 102-107. DOI:https://doi.org/10.1071/EG06102

43. Zel’dovich B. Y., Popovichev V. I., Ragulsky V. V. et al. On the connection between wavefronts of reflected and exciting light in stimulated scattering of Mandelstam-Bru¨llen // Letters to ZhETF. 1972. V. 15, № 3. P. 160-164.

44. Zhang Q., McMechan G. A. Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse time migration // GEOPHYSICS. 2011. V. 76, № 5. P. 135-149. DOI:https://doi.org/10.1190/geo2010-0314.1

45. Zhu X., Wu R.-S. Imaging diffraction points using the local image matrix in prestack migration // SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008. P. 2161-2165. DOI:https://doi.org/10.1190/1.3063853

Login or Create
* Forgot password?