Russian Scientific Experience of Using Web-based Geoinformation Systems in Seismology
Abstract and keywords
Abstract (English):
Web GIS technologies are widely used to present the results of scientific geospatial projects in a range of thematic areas. Monitoring of tectonic processes and seismic activity, construction and updating of seismic hazard maps and seismic risk maps at global and regional scales require timely display implemented in web-GIS. Differences between web-based GIS in seismology and web-based GIS for other disciplines in geosciences are shown, consisting of the type of data used, importance of the aspect of time, spatial localization, need for a modeling and forecasting environment, user interface and target audience. Characteristics of developments and current state of web-GIS on seismology in scientific organizations of Russia are given. An analysis of web-GIS technologies in Russian seismology was carried out: projects relevant for May–June 2025 were systematized, their comparison was carried out according to the technology used, functionality, content, the possibility of transferring scientific experience and data by the users. We described web-GIS projects of the Institute of Earthquake Prediction Theory and Mathematical Geophysics (IEPT RAS), deployed using QGIS server at the Institute's IT infrastructure. Interactive geoinformation Institute’s projects contain data on three research topics: “Global test for the real-time prediction of world strongest earthquakes”, “Lineaments and places of strong earthquakes’ possible occurrence” and database “East Arctic earthquake source mechanisms”. First one shows results of medium-term forecast using the M8 algorithm at global scale, second – results of seismic hazard’s degree recognition at the intersection of lineaments of various ranks, obtained as result of author’s morphostructural zoning for several world regions as Italian region, Central French Massif, Iberian Peninsula, Black-Caspian and South Siberia. The earthquake source mechanism database includes processed data for the earthquakes that occurred in 1927–2022 in the Eastern Arctic. As review results, we noted trends in seismological web GIS as an integration and analytics environment: the spread of client-server architecture with microservices, local servers, use of Big Data and digital twins. An example of the joint use and development of web GIS in a scientific academic organization and university is given.

Keywords:
Web-GIS, client-server architecture, microservices, Open Source, seismology, earthquakes, forecast, lineaments
Text
Text (PDF): Read Download
References

1. Advances in Web-based GIS, Mapping Services and Applications / ed. by S. Li, S. Dragicevic and B. Veenendaal. — London, UK : CRC Press, 2011. — 385 p.

2. Afanasiev A. P., Britkov V. B., Dribinskaya I. E., et al. The Electronic Earth project - information-analytical environment for spatial scientific data // Russian Journal of Earth Sciences. — 2010. — Vol. 11, no. 3. — RE3004. — https://doi.org/10.2205/2009es000431. — (In Russian).

3. Alesheikh A. A., Helali H. and Behroz H. A. Web GIS: Technologies and Its Applications // Symposium on Geospatial Theory, Processing and Applications. — Ottawa, 2002. — P. 9.

4. Ananda F., Kuria D. and Ngigi M. Towards a New Methodology for Web GIS Development // International Journal of Software Engineering & Applications (IJSEA). — 2016. — Vol. 7, no. 4. — P. 47–66. — https://doi.org/10.5121/ijsea.2016.7405.

5. Braginskaya L. P. and Grigoryuk A. P. The Experience of the Thematic Web Resource "Active Seismology" // Interexpo GEO-Siberia. — 2012. — Vol. 1, no. 4. — P. 117–121. — (In Russian).

6. Braginskaya L. P., Grigoryuk A. P. and Kovalevsky V. V. Integration of Knowledge and Data in Active Seismology // XVII Russian Conference «Distributed Information and Computing Resources: Digital Twins and Big Data». — Novosibirsk : Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 2019. — P. 48–55. — https://doi.org/10.25743/ict.2019.89.60.007. — (In Russian).

7. Braginskaya L. P., Grigoryuk A. P. and Kovalevsky V. V. Scientific Information System for Active Seismological Monitoring // Problems of Complex Geophysical Monitoring of Seismically Active Regions. Proceedings of the Eighth All-Russian Scientific and Technical Conference with International Participation. Volume 8. — GS RAS, 2021. — P. 378–381. — https://doi.org/10.35540/903258-451.2021.8.71. — (In Russian).

8. Braginskaya L. P., Grigoryuk A. P., Kovalevsky V. V., et al. Information Support for Integrated Geophysical Monitoring of the BNT // Processing of Spatial Data in Problems of Monitoring Natural and Anthropogenic Processes (SDM2023): Collection of Proceedings of the All-Russian Conference with International Participation (August 22-25, 2023, Berdsk). — Federal Research Center for Information, Computational Technologies (FRC ICT), 2023. — P. 368–375. — https://doi.org/10.25743/sdm.2023.11.92.061. — (In Russian).

9. Chebrov D. V., Kopylova G. N., Kasimova V. A., et al. Integrated Geophysical Observations and Information Resources of the Kamchatka Branch of the Geophysical Survey of the russian Academy of Sciences (Kamchatka Peninsula) // Russian Journal of Seismology. — 2024. — Vol. 6, no. 2. — P. 7–26. — https://doi.org/10.35540/2686-7907.2024.2.01. — (In Russian).

10. Chebrova A. Yu., Chemarev A. S., Matveenko E. A., et al. Seismological Data Information System in Kamchatka Branch of GS RAS: Organization Principles, Main Elements and Key Functions // Geophysical Research. — 2020. — Vol. 21, no. 3. — P. 66–91. — https://doi.org/10.21455/gr2020.3-5. — (In Russian).

11. Chemarev A. S., Matveenko E. A. and Fararonov A. A. Unified Information System of Seismological Data of the Kamchatka Branch of the Federal Research Center «Unified Geophysical Service of the Russian Academy of Sciences» (KB FRC EGS RAS) in 2021 // Problems of Complex Geophysical Monitoring of Seismically Active Regions. Proceedings of the Eighth All-Russian Scientific and Technical Conference with International Participation. Volume 8. — PetropavlovskKamchatsky : GS RAS, 2021. — P. 424–427. — https://doi.org/10.35540/903258-451.2021.8.81. — (In Russian).

12. Daud M., Ugliotti F. M. and Osello A. Comprehensive Analysis of the Use of Web-GIS for Natural Hazard Management: A Systematic Review // Sustainability. — 2024. — Vol. 16, no. 10. — P. 4238. — https://doi.org/10.3390/su16104238.

13. Dolgaya A. A. and Kalacheva E. G. Project of the Geographic Information System "Thermal Fields and Springs of the Kuril Islands" // Volcanism and Related Processes. Proceedings of the XXVII annual scientific conference dedicated to the Volcanologist Day. — Institute of Volcanology, Seismology, FEB RAS, 2024. — P. 207–210. — (In Russian).

14. Duarte L., Queiros C. and Teodoro A. C. Comparative analysis of four QGIS plugins for Web Maps creation // La Granja. — 2021. — Vol. 34, no. 2. — P. 8–26. — https://doi.org/10.17163/lgr.n34.2021.01.

15. Eremenko A. S., Leshchikova D. E. and Romanenkova L. S. Scientific Popular Portal: Status and Development Perspectives // Information Technologies for Earth Sciences and Digitalization in Geology and Mining. ITES-2022: Materials of the VI All-Russian Conference. Vladivostok, October 3-8, 2022. — Vladivostok : Far Eastern Federal University, 2022a. — P. 49. — (In Russian).

16. Eremenko V. S., Naumova V. V. and Zagumennov A. A. Development of a Digital Ecosystem for Analyzing Geological Data // Information Technologies for Earth Sciences and Digitalization in Geology and Mining. ITES-2022: Materials of the VI All-Russian Conference. Vladivostok, October 3-8, 2022. — Vladivostok : Far Eastern Federal University, 2022b. — P. 23. — (In Russian).

17. Gitis V. and Derendyaev A. From monitoring of seismic fields to the automatic forecasting of earthquakes // International Journal of Web Information Systems. — 2019. — Vol. 15, no. 5. — P. 535–549. — https://doi.org/10.1108/ijwis-12-2018-0087.

18. Gitis V. and Derendyaev A. A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting // Remote Sensing. — 2023. — Vol. 15, no. 8. — P. 2171. — https://doi.org/10.3390/rs15082171.

19. Gitis V. G. and Derendyaev A. B. Web-Based GIS Platform for Automatic Prediction of Earthquakes // Computational Science and Its Applications - ICCSA 2018. — Springer International Publishing, 2018. — P. 268–283. — https://doi.org/10.1007/978-3-319-95168-3_18.

20. Gitis V. G., Derendyaev A. B. and Saltykov V. A. GIS Platform for Monitoring and Analyzing Seismic Activity Fields // Problems of Complex Geophysical Monitoring of the Russian Far East. Proceedings of the Fifth Scientific and Technical Conference. Petropavlovsk-Kamchatsky. September 27 - October 3, 2015. — Obninsk : GS RAS, 2015a. — P. 47–50. — (In Russian).

21. Gitis V. G., Derendyaev A. B. and Weinstock A. P. Web-Based Geographic Information Technologies for Environmental Monitoring and Analysis // Computational Science and Its Applications - ICCSA 2015. — Springer International Publishing, 2015b. — P. 698–712. — https://doi.org/10.1007/978-3-319-21470-2_51.

22. Gladkov A. A. and Lunina O. V. Development of the Web-Oriented GIS "Activetectonics" as a Data Bank of Information on the Active Tectonics of the Southern of Eastern Siberia // Information Technologies for Earth Sciences and Digitalization in Geology and Mining. ITES-2022: Materials of the VI All-Russian Conference. Vladivostok, October 3-8, 2022. — Vladivostok : Far Eastern Federal University, 2022. — P. 25–26. — (In Russian).

23. Gomez R. Perez. Web-based GIS supporting the assessment of earthquake-triggered landslides projects // XXIII International Cartographic Conference. — ICA, 2007. — P. 1–10.

24. Grigoriuk A. P. and Braginskaya L. P. The Informational System for Complex Support of Scientific Investigations in Active Seismology // Bulletin of Kemerovo State University. — 2012. — Vol. 2, 4(52). — P. 43–48. — (In Russian).

25. Grigoruk A. P. and Braginskaya L. P. Web Cartography Based on Google Map Service // GEO-Siberia. — 2008. — Vol. 3. — P. 1–4. — (In Russian).

26. Gvishiani A. D., Rozenberg I. N. and Soloviev A. A. Geophysical Processes in the Arctic and the System Analysis of their Impact on Operation and Development of the Transport Infrastructure // World of Transport and Transportation. — 2023. — Vol. 21, no. 3. — P. 6–34. — https://doi.org/10.30932/1992-3252-2023-21-3-1.

27. Gvishiani A. D., Tatarinov V. N., Kaftan V. I., et al. GIS-Oriented Database for the System Analysis and Prediction of the Geodynamic Stability of the Nizhne-Kansky Massif // Izvestiya, Atmospheric and Oceanic Physics. — 2021. — Vol. 57, no. 9. — P. 1151–1161. — https://doi.org/10.1134/S0001433821090486.

28. Hadi F. S. Developing Web Services and Challenges // 5th International Conference on Applied Engineering and Natural Sciences. — Konya, Turkey : All Sciences Proceedings, 2023. — P. 6–11.

29. Han R. Web GIS in Development: From Research and Teaching Perspectives // GIScience Teaching and Learning Perspectives. — Springer International Publishing, 2019. — P. 103–122. — https://doi.org/10.1007/978-3-030-06058-9_7.

30. Ismail-Zadeh A. and Kossobokov V. Earthquake Prediction, M8 Algorithm // Encyclopedia of Solid Earth Geophysics. — Springer International Publishing, 2020. — P. 204–208. — https://doi.org/10.1007/978-3-030-10475-7_157-1.

31. Kazantsev V. A., Romanova I. M., Filippov Yu. A., et al. State and Prospects of Development of the Web Portal of the Far Eastern Branch of the Russian Academy of Sciences Scientific Center (KNC DVO RAN) // Modern Information Technologies for Scientific Research. Materials of the All-Russian Conference, Magadan, April 20-24, 2008. — Magadan : North-Eastern Scientific Center, FEB RAS, 2008. — P. 53–54. — (In Russian).

32. Konovalov A. V., Stepnov A. A., Bogdanov E. S., et al. New Tools for Rapid Assessment of Felt Reports and a Case Study on Sakhalin Island // Seismic Instruments. — 2022. — Vol. 58, no. 6. — P. 676–693. — https://doi.org/10.3103/s0747923922060081.

33. Konovalov A. V., Stepnov A. A., Orlin I. D., et al. PGA shaking maps in Russia by Eqalert.ru seismological service // Problems of Engineering Seismology. — 2024. — Vol. 51, no. 3. — P. 20–41. — https://doi.org/10.21455/vis2024.3-2. — (In Russian).

34. Koshkarev A. V. and Rotanova I. N. Russian Science and Educational and Industry Geo-Portals as Elements of the Spatial Data Infractructure // Vestnik NSU. Series: Information Technologies. — 2014. — Vol. 12, no. 4. — P. 38–52. — (In Russian).

35. Kossobokov V. G. and Shchepalina P. D. Times of Increased Probabilities for Occurrence of World’s Largest Earthquakes: 30 Years Hypothesis Testing in Real Time // Izvestiya, Physics of the Solid Earth. — 2020. — Vol. 56, no. 1. — P. 36–44. — https://doi.org/10.1134/s1069351320010061.

36. Kovalevsky V. V., Braginskaya L. P. and Grigoryuk A. P. Information and Analytical System for Vibroseismic Research // Problemy Informatiki. — 2013. — 3(20). — P. 22–29. — (In Russian).

37. Mandrugin V. V. and Arkhipenko O. P. WEBGIS as Result of Integration of GIS and Internet Technologies // GEOSiberia. — 2011. — Vol. 1, no. 2. — P. 50–53. — (In Russian).

38. Melkiy V. A., Dolgopolov D. V. and Verkhoturov A. A. Monitoring the Geospace of Volcano Hazard Areas // Regional Geosystems. — 2025. — Vol. 49, no. 1. — P. 93–111. — https://doi.org/10.52575/2712-7443-2025-49-1-93-111. — (In Russian).

39. Naumova V. V., Eremenko V. S., Eremenko A. S., et al. From an Information and Analytical Environment to Support Scientific Research in Geology to a Single Digital Space of Geological Scientific Knowledge // Information Technologies for Earth Sciences and Digitalization in Geology and Mining. ITES-2022: Materials of the VI All-Russian Conference. Vladivostok, October 3-8, 2022. — Vladivostok : Far Eastern Federal University, 2022. — P. 15–16. — (In Russian).

40. Pashova L., Kouteva-Guentcheva M. and Bandrova T. Review and systematization of the available data for earthquake risk mitigation in Bulgaria using GIS // FIG Working Week 2015. From the Wisdom of the Ages to the Challenges of the Modern World. — Sofia, Bulgaria, 2015. — P. 1–16.

41. Petkova N. V. GIS "UFO Seismic" // Internet-zhurnal «Naukovedeniye». — 2012. — No. 4. — P. 1–7. — (In Russian).

42. Phuong Ng. H., Nam Ng. T. and Truyen P. T. Development of a Web-GIS based Decision Support System for earthquake warning service in Vietnam // Vietnam Journal of Earth Sciences. — 2018. — Vol. 40, no. 3. — P. 193–206. — https://doi.org/10.15625/0866-7187/40/3/12638.

43. Plotnikova A. S., Khamedov V. A., Arkhiptseva E. A., et al. An overview of Russian geographic information services on environmental issues based on open source software // Geoinformatika. — 2024. — No. 4. — P. 4–20. — https://doi.org/10.47148/1609-364x-2024-4-4-20. — (In Russian).

44. Podolskaia E., Nekrasova A., Prokhorova T., et al. Web-gis projects at the Institute of Earthquake prediction theory and mathematical geophysics, Russian Academy of Sciences // Proceedings Vol. 2, 8th International Conference on Cartography and GIS, 20-25 June 2022. — Sofia : Bulgarian Cartographic Association, 2022. — P. 237–243.

45. Podolskaya E. S., Gorshkov A. I., Novikova O. V., et al. Geodatabase of Lineaments and Seismogenic Nodes of the Black Sea-Caspian and Italian Regions for GIS. Certificate of State Registration of the Database №2022622354. — Institute of Earthquake Prediction Theory, Mathematical Geophysics, RAS, 2022. — (In Russian).

46. Podolskaya E. S., Gorshkov A. I., Novikova O. V., et al. Geodatabase of Lineaments and Seismogenic Nodes of the Bulgaria and Greece Regions for GIS. Certificate of State Registration of the Database №2023624052. — Institute of Earthquake Prediction Theory, Mathematical Geophysics, RAS, 2023a. — (In Russian).

47. Podolskaya E. S., Gorshkov A. I., Novikova O. V., et al. Geodatabase of Lineaments and Seismogenic Nodes of the Iberia and Central French Massif Regions for GIS. Certificate of State Registration of the Database №2023623873. — Institute of Earthquake Prediction Theory, Mathematical Geophysics, RAS, 2023b. — (In Russian).

48. Podolskaya E. S., Gorshkov A. I., Novikova O. V., et al. Geodatabase of Lineaments and Seismogenic Nodes of Southern Siberia for GIS. Certificate of State Registration of the Database №2024623735. — Institute of Earthquake Prediction Theory, Mathematical Geophysics, RAS, 2024. — (In Russian).

49. Ponomareva V. V., Melnikov D. V. and Romanova I. M. Geoinformation System «Recent Volcanism of Kamchatka» // Modern Information Technologies for Scientific Research: Materials of the All-Russian Conference, Magadan, April 20-24, 2008. — Magadan : North-Eastern Scientific Center, FEB RAS, 2008. — P. 105–106. — (In Russian).

50. Potanin M. Yu. Web GIS Technologies: Main Directions of Development // System Analysis in Science and Education. — 2014. — No. 2. — P. 43–52. — (In Russian).

51. Rashidov V. A., Romanova I. M., Bondarenko V. I., et al. Information technologies in geomagnetic investigations of Late Cenozoic Pacific submarine volcanoes // Russian Journal of Earth Sciences. — 2010. — Vol. 11, no. 3. — RE3001. — https://doi.org/10.2205/2009es000358. — (In Russian).

52. Report of Geophysical Center RAS for 2022. Results of Scientific Research and International Projects. Vol. 11. — 2023. — https://doi.org/10.2205/2023bs057. — (In Russian).

53. Report of the Geophysical Center RAS for 2022. Results of Scientific Research and International Projects / ed. by A. A. Soloviev and R. I. Krasnoperov. — Geoinformatics Research Papers, vol. 11, №1 (BS1003), 2023. — https://doi.org/10.2205/2023bs057. — (In Russian).

54. Romanova I. M. Creation of a Spatial Data and Metadata Management System at the Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences (IVS FEB RAS) Based on the Open Source Software GeoNetwork // Modern Information Technologies for Fundamental Scientific Research of the Russian Academy of Sciences in the Field of Earth Sciences: Materials of the All-Russian Seminar, April 8-11, 2010. — Institute of Volcanology, Seismology, FEB RAS, 2010. — (In Russian).

55. Romanova I. M. Spatial Data Infractructure in the Institute of Volcanology and Seismology FEB RAS: Current State and Future Evolution // Bulletin of Kamchatka Regional Association «Educational-Scientific Center». Earth Sciences. — 2015. — Vol. 25, no. 1. — P. 72–78. — (In Russian).

56. Rovithis E., Makra K., Kontopoulos Ch., et al. The Kalochori Accelerometric Network (KAN), database and Web-GIS portal: earthquake records update between 01/01/2017 and 31/03/2021. — 2022. — https://doi.org/10.6084/M9.FIGSHARE.19070123.V1.

57. Soloviev A. A., Krasnoperov R. I., Nikolov B. P., et al. Web-Oriented Software System for Analysis of Spatial Geophysical Data Using Geoinformatics Methods // Izvestiya, Atmospheric and Oceanic Physics. — 2018a. — Vol. 54, no. 9. — P. 1312–1319. — https://doi.org/10.1134/S0001433818090360.

58. Soloviev A. A., Soloviev Al. A., Gvishiani A. D., et al. GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions // Izvestiya, Atmospheric and Oceanic Physics. — 2018b. — Vol. 54, no. 9. — P. 1363–1373. — https://doi.org/10.31857/S020596140003241-6.

59. Stepanov S. Yu. Comparative Analysis of Open Geoinformation Systems // Information Technologies and Systems: Management, Economics, Transport, Law. — 2013. — 1(10). — P. 55–63. — (In Russian).

60. Tubanov Ts. A. and Predein P. A. The Creation of a Gis-Based Seismic Hazard Maps of Urban Areas (For Example, Ulan-Ude) // Interexpo GEO-Siberia. Vol. 7. — 2015. — P. 83–85. — (In Russian).

61. Vagizov M. R. Web Cartography: A Textbook. — Saint Petersburg : Publishing House «Svoio Izdatel’stvo», 2020. — 73 p. — (In Russian).

62. Veenendaal B., Brovelli M. A. and Li S. Review of Web Mapping: Eras, Trends and Directions // ISPRS International Journal of Geo-Information. — 2017. — Vol. 6, no. 10. — P. 317. — https://doi.org/10.3390/ijgi6100317.

63. Vinueza-Martinez J., Correa-Peralta M., Ramirez-Anormaliza R., et al. Geographic Information Systems (GISs) Based on WebGIS Architecture: Bibliometric Analysis of the Current Status and Research Trends // Sustainability. — 2024. — Vol. 16, no. 15. — P. 6439. — https://doi.org/10.3390/su16156439.

64. Vorobev A. V., Pilipenko V. A., Enikeev T. A., et al. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations // Computer Optics. — 2020. — Vol. 44, no. 5. — P. 782–790. — https://doi.org/10.18287/2412-6179-CO-707. — (In Russian).

65. Wu X., Xu C., Xu X., et al. A Web-GIS hazards information system of the 2008 Wenchuan Earthquake in China // Natural Hazards Research. — 2022. — Vol. 2, no. 3. — P. 210–217. — https://doi.org/10.1016/j.nhres.2022.03.003.

66. Yakubaylik O. E. Features of Program Building which Provide Geoinformation Web Systems // International Research Journal. — 2018. — 5 (71). — P. 62–64. — https://doi.org/10.23670/IRJ.2018.71.025. — (In Russian).

67. Zadorozhnyy M. V., Vysotsky E. M., Vishnevsky A. V., et al. Spatial Data Infrastucture of the Central Siberian Geologycal Museum // Information Technologies for Earth Sciences and Digitalization in Geology and Mining. ITES-2022: Materials of the VI All-Russian Conference. Vladivostok, October 3-8, 2022. — Vladivostok : Far Eastern Federal University, 2022. — P. 42. — (In Russian).

68. Zheng K.-G., Soomro T. R. and Pan Y.-h. Web GIS: Implementation issues // Chinese Geographical Science. — 2000. — Vol. 10, no. 1. — P. 74–79. — https://doi.org/10.1007/s11769-000-0039-0.


Login or Create
* Forgot password?