Russian Federation
Vladikavkaz, Vladikavkaz, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The numerical method for two-dimensional inverse dynamic seismic problem for a viscoelastic isotropic medium is presented. The system of differential equations of elasticity for isotropic medium of memory type is considered as a mathematical model. The unknown values are the displacement, the memory function of the medium (the kernel of the integral term) and the propagation velocity of elastic waves in a weakly horizontally inhomogeneous medium. Additional information for the inverse problem is the response displacement measured on the surface. The method is based on reducing the inverse problem to a system of Volterra-type integral equations and their sequential numerical implementation. The results of the study are analyzed and compared with the analytical solution. It is shown that the results are in satisfactory agreement.
mathematical modeling, inhomogenious geological medium of memory type, velocity of seismic waves propogation
1. Abramyan G. O., Kuz'min D. K., Kuz'min Yu. O. Reshenie obratnyh zadach sovremennoy geodinamiki nedr na mestorozhdeniyah uglevodorodov i podzemnyh hranilischah gaza // Marksheyderskiy vestnik. - 2018. - T. 4(125). - S. 52-61.
2. Alekseev A. S. Obratnye dinamicheskie zadachi seysmiki // Nekotorye metody i algoritmy interpretacii geofizicheskih dannyh. - Moskva : Nauka, 1967. - S. 9-84.
3. Alekseev A. S., Dobrinskiy V. I. Nekotorye voprosy prakticheskogo ispol'zovaniya obratnyh dinamicheskih zadach seysmiki // Matematicheskie problemy geofiziki. T. 6. - Novosibirsk : VC SO AN SSSR, 1975. - S. 7-53.
4. Ahmatov Z. A., Totieva Zh. D. Kvazidvumernaya koefficientnaya obratnaya zadacha dlya volnovogo uravneniya v slabo gorizontal'no-neodnorodnoy srede s pamyat'yu // Vladikavkazskiy matematicheskiy zhurnal. - 2021. - T. 23, № 4. - S. 15-27. - DOI:https://doi.org/10.46698/l4464-6098-4749-m.
5. Blagoveschenckiy A. S., Fedorenko D. A. Obratnaya zadacha dlya uravneniya akustiki v slabo gorizontal'no neodnorodnoy crede // Zapicki nauchnyh ceminarov POMI. - 2008. - T. 35, № 3. - S. 81-99. - DOI:https://doi.org/10.1007/s10958-008-9221-1.
6. Voznesenskiy E. A., Kushnareva E. S., Funikova V. V. Priroda i zakonomernosti pogloscheniya voln napryazheniy v gruntah // Vestnik Moskovskogo universiteta. Seriya 4. Geologiya. - 2011. - T. 4. - S. 39-47.
7. Dobrynina A. A. Dobrotnost' litosfery i ochagovye parametry zemletryaseniy Baykal'skoy riftovoy sistemy : 07.00.02 / Dobrynina A. A. - Novosibirsk, 2011.
8. Durdiev D. K. Mnogomernaya obratnaya zadacha dlya uravneniya c pamyat'yu // Sibirskiy matematicheskiy zhurnal. - 1994. - T. 35, № 3. - S. 574-582.
9. Durdiev D. K. Obratnaya zadacha opredeleniya dvuh koefficientov v odnom integro-differencial'nom volnovom uravnenii // Sibirskiy zhurnal industrial'noy matematiki. - 2009. - T. 12, № 3. - S. 28-40.
10. Durdiev D. K. Obratnye zadachi dlya cred c pocledeyctviem. - Tashkent : TURON - IKBOL, 2014. - S. 240.
11. Durdiev D. K., Bozorov Z. R. Zadacha opredeleniya yadra integro-differencial'nogo volnovogo uravneniya so slabo gorizontal'noy odnorodnost'yu // Dal'nevostochnyy matematicheskiy zhurnal. - 2013. - T. 13, № 2. - S. 209-221.
12. Durdiev D. K., Rahmonov A. A. Obratnaya zadacha dlya sistemy integro-differencial'nyh uravneniy SH-voln v vyazkouprugoy poristoy srede: global'naya razreshimost' // Teoreticheskaya i matematicheskaya fizika. - 2018. - T. 195, № 3. - S. 491-506.
13. Durdiev D. K., Totieva Zh. D. Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugocti // Sibirskiy zhurnal industrial'noy matematiki. - 2013. - T. 16, № 2. - S. 72-82.
14. Durdiev U. D. Chislennoe opredelenie zavisimosti dielektricheskoy pronicaemosti sloistoy sredy ot vremennoy chastoty // Sibirskie elektronnye matematicheskie izvestiya. - 2020. - T. 17. - S. 179-189. - DOI: 10.33048/ semi.2020.17.013.
15. Karchevskiy A. L., Fat'yanov A. G. Chislennoe reshenie obratnoy zadachi dlya sistemy uprugosti s posledeystviem dlya vertikal'no neodnorodnoy sredy // Sibirskiy zhurnal vychislitel'noy matematiki. - 2001. - T. 4, № 3. - S. 259-268.
16. Mazurov B. T. Geodinamicheskie sistemy (reshenie obratnyh zadach geodezicheskimi metodami) // Vestnik Sibirskogo gosudarstvennogo universiteta geosistem i geotehnologiy. - 2017. - T. 22, № 1. - S. 5-17.
17. Rahmonov A. A., Durdiev U. D., Bozorov Z. R. Zadacha opredeleniya skorosti zvuka i funkcii pamyati anizotropnoy sredy // Teoreticheskaya i matematicheskaya fizika. - 2021. - T. 207, № 1. - S. 112-132. - DOI:https://doi.org/10.4213/tmf10035.
18. Romanov V. G. Obratnye zadachi matematicheskoy fiziki. - Moskva : Nauka, 1984. - S. 262.
19. Romanov V. G. Dvumernaya obratnaya zadacha dlya integro-differencial'nogo uravneniya elektrodinamiki // Trudy IMM UrO RAN. - 2012. - T. 18, № 1. - S. 273-280.
20. Romanov V. G. Ob opredelenii koefficientov v uravneniyah vyazkouprugosti // Sibirskiy matematicheskiy zhurnal. - 2014. - T. 55, № 3. - S. 617-626.
21. Totieva Zh. D. Dvumernaya koefficientnaya obratnaya zadacha dlya uravneniya vyazkouprugocti v clabo gorizontal'noneodnorodnoy crede // Teoreticheskaya i matematicheskaya fizika. - 2022. - T. 213, № 2. - S. 193-213. - DOI:https://doi.org/10.4213/tmf10311.
22. Tuaeva Zh. D. Mnogomernaya matematicheskaya model' seysmiki s pamyat'yu // Issledovaniya po differencial'nym uravneniyam i matematicheskomu modelirovaniyu. Sbornik dokladov VI Mezhdunarodnoy konferencii "Poryadkovyy analiz i smezhnye voprosy matematicheskogo modelirovaniya". - 2008.
23. Bozorov Z. R. Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect // Eurasian Journal of Mathematical and Computer Applications. - 2020. - Vol. 8, no. 2. - P. 28-40. - DOI:https://doi.org/10.32523/2306-6172-2020-8-2-28-40.
24. Bukhgeym A. L. Inverse problems of memory reconstruction // Journal of Inverse and Ill-Posed Problems. - 1993. - Vol. 1, no. 3. - DOI:https://doi.org/10.1515/jiip.1993.1.3.193.
25. Davies A. R., Douglas R. J. A kernel approach to deconvolution of the complex modulus in linear viscoelasticity // Inverse Problems. - 2019. - Vol. 36, no. 1. - P. 015001. - DOI:https://doi.org/10.1088/1361-6420/ab2944.
26. Durdiev D. K., Totieva Z. D. Kernel Determination Problems in Hyperbolic Integro-Differential Equations. - Springer Nature Singapore, 2023. - P. 368. - DOI:https://doi.org/10.1007/978-981-99-2260-4.
27. Janno J., Wolfersdorf L. V. Inverse Problems for Identification of Memory Kernels in Viscoelasticity // Mathematical Methods in the Applied Sciences. - 1997. - Vol. 20, no. 4. - P. 291-314. - DOI:https://doi.org/10.1002/(SICI)1099-1476(19970310)20:4<291::AID-MMA860>3.0.CO;2-W.
28. Lorenzi A., Paparoni E. Direct and inverse problems in the theory of materials with memory // Rendiconti del Seminario Matematico della Università di Padova. - 1992. - Vol. 87. - P. 105-138.
29. Lorenzi A., Romanov V. G. Recovering two Lamé kernels in a viscoelastic system // Inverse Problems & Imaging. - 2011. - Vol. 5, no. 2. - P. 431-464. - DOI:https://doi.org/10.3934/ipi.2011.5.431.
30. Lorenzi A., Sinestrari E. An inverse problem in the theory of materials with memory // Nonlinear Analysis: Theory, Methods & Applications. - 1988. - Vol. 12, no. 12. - P. 1317-1335. - DOI:https://doi.org/10.1016/0362-546x(88)90080-6.
31. Lorenzi A., Ulekova Z. S., Yakhno V. G. An inverse problem in viscoelasticity // Journal of Inverse and Ill-Posed Problems. - 1994. - Vol. 2, no. 2. - DOI:https://doi.org/10.1515/jiip.1994.2.2.131.
32. Romanov V., Yamamoto M. Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement // Applicable Analysis. - 2010. - Vol. 89, no. 3. - P. 377-390. - DOI:https://doi.org/10.1080/00036810903518975.