Numerical Solution of a Two-Dimensional Problem of Determining the Propagation Velocity of Seismic Waves in Inhomogeneous Medium of Memory Type
Abstract and keywords
Abstract (English):
The numerical method for two-dimensional inverse dynamic seismic problem for a viscoelastic isotropic medium is presented. The system of differential equations of elasticity for isotropic medium of memory type is considered as a mathematical model. The unknown values are the displacement, the memory function of the medium (the kernel of the integral term) and the propagation velocity of elastic waves in a weakly horizontally inhomogeneous medium. Additional information for the inverse problem is the response displacement measured on the surface. The method is based on reducing the inverse problem to a system of Volterra-type integral equations and their sequential numerical implementation. The results of the study are analyzed and compared with the analytical solution. It is shown that the results are in satisfactory agreement.

Keywords:
mathematical modeling, inhomogenious geological medium of memory type, velocity of seismic waves propogation
Text
Text (PDF): Read Download
References

1. Abramyan G. O., Kuz'min D. K., Kuz'min Yu. O. Reshenie obratnyh zadach sovremennoy geodinamiki nedr na mestorozhdeniyah uglevodorodov i podzemnyh hranilischah gaza // Marksheyderskiy vestnik. - 2018. - T. 4(125). - S. 52-61.; EDN: https://elibrary.ru/UXQVRG

2. Alekseev A. S. Obratnye dinamicheskie zadachi seysmiki // Nekotorye metody i algoritmy interpretacii geofizicheskih dannyh. - Moskva : Nauka, 1967. - S. 9-84.

3. Alekseev A. S., Dobrinskiy V. I. Nekotorye voprosy prakticheskogo ispol'zovaniya obratnyh dinamicheskih zadach seysmiki // Matematicheskie problemy geofiziki. T. 6. - Novosibirsk : VC SO AN SSSR, 1975. - S. 7-53.

4. Ahmatov Z. A., Totieva Zh. D. Kvazidvumernaya koefficientnaya obratnaya zadacha dlya volnovogo uravneniya v slabo gorizontal'no-neodnorodnoy srede s pamyat'yu // Vladikavkazskiy matematicheskiy zhurnal. - 2021. - T. 23, № 4. - S. 15-27. - DOI:https://doi.org/10.46698/l4464-6098-4749-m.; ; EDN: https://elibrary.ru/HFKFKE

5. Blagoveschenckiy A. S., Fedorenko D. A. Obratnaya zadacha dlya uravneniya akustiki v slabo gorizontal'no neodnorodnoy crede // Zapicki nauchnyh ceminarov POMI. - 2008. - T. 35, № 3. - S. 81-99. - DOI:https://doi.org/10.1007/s10958-008-9221-1.; ; EDN: https://elibrary.ru/LLLEIT

6. Voznesenskiy E. A., Kushnareva E. S., Funikova V. V. Priroda i zakonomernosti pogloscheniya voln napryazheniy v gruntah // Vestnik Moskovskogo universiteta. Seriya 4. Geologiya. - 2011. - T. 4. - S. 39-47.; EDN: https://elibrary.ru/OJSDUZ

7. Dobrynina A. A. Dobrotnost' litosfery i ochagovye parametry zemletryaseniy Baykal'skoy riftovoy sistemy : 07.00.02 / Dobrynina A. A. - Novosibirsk, 2011.

8. Durdiev D. K. Mnogomernaya obratnaya zadacha dlya uravneniya c pamyat'yu // Sibirskiy matematicheskiy zhurnal. - 1994. - T. 35, № 3. - S. 574-582.

9. Durdiev D. K. Obratnaya zadacha opredeleniya dvuh koefficientov v odnom integro-differencial'nom volnovom uravnenii // Sibirskiy zhurnal industrial'noy matematiki. - 2009. - T. 12, № 3. - S. 28-40.; EDN: https://elibrary.ru/KXFOTX

10. Durdiev D. K. Obratnye zadachi dlya cred c pocledeyctviem. - Tashkent : TURON - IKBOL, 2014. - S. 240.

11. Durdiev D. K., Bozorov Z. R. Zadacha opredeleniya yadra integro-differencial'nogo volnovogo uravneniya so slabo gorizontal'noy odnorodnost'yu // Dal'nevostochnyy matematicheskiy zhurnal. - 2013. - T. 13, № 2. - S. 209-221.; EDN: https://elibrary.ru/RGTWTV

12. Durdiev D. K., Rahmonov A. A. Obratnaya zadacha dlya sistemy integro-differencial'nyh uravneniy SH-voln v vyazkouprugoy poristoy srede: global'naya razreshimost' // Teoreticheskaya i matematicheskaya fizika. - 2018. - T. 195, № 3. - S. 491-506.; DOI: https://doi.org/10.4213/tmf9480; EDN: https://elibrary.ru/XNRVNZ

13. Durdiev D. K., Totieva Zh. D. Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugocti // Sibirskiy zhurnal industrial'noy matematiki. - 2013. - T. 16, № 2. - S. 72-82.; EDN: https://elibrary.ru/QCBBAT

14. Durdiev U. D. Chislennoe opredelenie zavisimosti dielektricheskoy pronicaemosti sloistoy sredy ot vremennoy chastoty // Sibirskie elektronnye matematicheskie izvestiya. - 2020. - T. 17. - S. 179-189. - DOI: 10.33048/ semi.2020.17.013.; DOI: https://doi.org/10.33048/semi.2020.17.013; EDN: https://elibrary.ru/GYZZVX

15. Karchevskiy A. L., Fat'yanov A. G. Chislennoe reshenie obratnoy zadachi dlya sistemy uprugosti s posledeystviem dlya vertikal'no neodnorodnoy sredy // Sibirskiy zhurnal vychislitel'noy matematiki. - 2001. - T. 4, № 3. - S. 259-268.

16. Mazurov B. T. Geodinamicheskie sistemy (reshenie obratnyh zadach geodezicheskimi metodami) // Vestnik Sibirskogo gosudarstvennogo universiteta geosistem i geotehnologiy. - 2017. - T. 22, № 1. - S. 5-17.

17. Rahmonov A. A., Durdiev U. D., Bozorov Z. R. Zadacha opredeleniya skorosti zvuka i funkcii pamyati anizotropnoy sredy // Teoreticheskaya i matematicheskaya fizika. - 2021. - T. 207, № 1. - S. 112-132. - DOI:https://doi.org/10.4213/tmf10035.; ; EDN: https://elibrary.ru/VQBJPL

18. Romanov V. G. Obratnye zadachi matematicheskoy fiziki. - Moskva : Nauka, 1984. - S. 262.

19. Romanov V. G. Dvumernaya obratnaya zadacha dlya integro-differencial'nogo uravneniya elektrodinamiki // Trudy IMM UrO RAN. - 2012. - T. 18, № 1. - S. 273-280.; EDN: https://elibrary.ru/OPWJLD

20. Romanov V. G. Ob opredelenii koefficientov v uravneniyah vyazkouprugosti // Sibirskiy matematicheskiy zhurnal. - 2014. - T. 55, № 3. - S. 617-626.; EDN: https://elibrary.ru/SJBRGD

21. Totieva Zh. D. Dvumernaya koefficientnaya obratnaya zadacha dlya uravneniya vyazkouprugocti v clabo gorizontal'noneodnorodnoy crede // Teoreticheskaya i matematicheskaya fizika. - 2022. - T. 213, № 2. - S. 193-213. - DOI:https://doi.org/10.4213/tmf10311.; ; EDN: https://elibrary.ru/PCLRQH

22. Tuaeva Zh. D. Mnogomernaya matematicheskaya model' seysmiki s pamyat'yu // Issledovaniya po differencial'nym uravneniyam i matematicheskomu modelirovaniyu. Sbornik dokladov VI Mezhdunarodnoy konferencii "Poryadkovyy analiz i smezhnye voprosy matematicheskogo modelirovaniya". - 2008.; EDN: https://elibrary.ru/TRAAYT

23. Bozorov Z. R. Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect // Eurasian Journal of Mathematical and Computer Applications. - 2020. - Vol. 8, no. 2. - P. 28-40. - DOI:https://doi.org/10.32523/2306-6172-2020-8-2-28-40.; ; EDN: https://elibrary.ru/RFKJWH

24. Bukhgeym A. L. Inverse problems of memory reconstruction // Journal of Inverse and Ill-Posed Problems. - 1993. - Vol. 1, no. 3. - DOI:https://doi.org/10.1515/jiip.1993.1.3.193.; ; EDN: https://elibrary.ru/ZYGTPP

25. Davies A. R., Douglas R. J. A kernel approach to deconvolution of the complex modulus in linear viscoelasticity // Inverse Problems. - 2019. - Vol. 36, no. 1. - P. 015001. - DOI:https://doi.org/10.1088/1361-6420/ab2944.; ; EDN: https://elibrary.ru/FYKHIA

26. Durdiev D. K., Totieva Z. D. Kernel Determination Problems in Hyperbolic Integro-Differential Equations. - Springer Nature Singapore, 2023. - P. 368. - DOI:https://doi.org/10.1007/978-981-99-2260-4.

27. Janno J., Wolfersdorf L. V. Inverse Problems for Identification of Memory Kernels in Viscoelasticity // Mathematical Methods in the Applied Sciences. - 1997. - Vol. 20, no. 4. - P. 291-314. - DOI:https://doi.org/10.1002/(SICI)1099-1476(19970310)20:4<291::AID-MMA860>3.0.CO;2-W.

28. Lorenzi A., Paparoni E. Direct and inverse problems in the theory of materials with memory // Rendiconti del Seminario Matematico della Università di Padova. - 1992. - Vol. 87. - P. 105-138.

29. Lorenzi A., Romanov V. G. Recovering two Lamé kernels in a viscoelastic system // Inverse Problems & Imaging. - 2011. - Vol. 5, no. 2. - P. 431-464. - DOI:https://doi.org/10.3934/ipi.2011.5.431.

30. Lorenzi A., Sinestrari E. An inverse problem in the theory of materials with memory // Nonlinear Analysis: Theory, Methods & Applications. - 1988. - Vol. 12, no. 12. - P. 1317-1335. - DOI:https://doi.org/10.1016/0362-546x(88)90080-6.

31. Lorenzi A., Ulekova Z. S., Yakhno V. G. An inverse problem in viscoelasticity // Journal of Inverse and Ill-Posed Problems. - 1994. - Vol. 2, no. 2. - DOI:https://doi.org/10.1515/jiip.1994.2.2.131.; ; EDN: https://elibrary.ru/XMSBBK

32. Romanov V., Yamamoto M. Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement // Applicable Analysis. - 2010. - Vol. 89, no. 3. - P. 377-390. - DOI:https://doi.org/10.1080/00036810903518975.; ; EDN: https://elibrary.ru/MXEVOZ

Login or Create
* Forgot password?