employee
NUST MISiS (College of Mining, lecturer)
employee
Moscow, Russian Federation
employee
employee
employee
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (labratory of geoinformatics, junior researcher)
employee
employee
employee
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (labratory of geoinformatics, leading researcher)
doctoral candidate
VAC 1.6.20 Геоинформатика, картография
VAC 1.6.21 Геоэкология
VAC 1.6 Науки о Земле и окружающей среде
UDK 551.242 Тектонические движения, колебания и т. п. Тектонические структуры земной коры и их элементы
UDK 550.34.016 Экспериментальные исследования: измерения, опыты, полевые эксперименты
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.31 Физика Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.06.01 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
There are numerous methods for modeling velocity fields of the Earth’s crust. However, only a few of them are capable of modeling data beyond the contour of the geodetic network (extrapolating). Spatial modeling based on a neural network approach allows for the adequate modeling of the field of recent crustal movements and deformations of the Earth’s crust beyond the geodetic network contour. The study extensively examines the hyperparameter settings and justifies the applicability of the neural network model for predicting crustal movement fields using the Ossetian geodynamic polygon as an example. The presented results, when compared to classical modeling methods, demonstrate that the neural network approach confidently yields results no worse than classical methods. The results of modeling for the Ossetian polygon can be used for geodynamic zoning, identification zones of extension and compression, computing the tectonic component of stresses, and identifying areas of high-gradient displacements.
velocity fields, resent crustal movements, spatial modeling, regular grid, extrapolation, interpolation, artificial neural networks
1. Agayan, S. M., V. N. Tatarinov, A. D. Gvishiani, S. R. Bogoutdinov, and I. O. Belov (2020), FDPS algorithm in stability assessment of the Earth’s crust structural tectonic blocks, Russian Journal of Earth Sciences, 20, ES6014, https://doi.org/10.2205/2020ES000752
2. Agayan, S. M., I. V. Losev, I. O. Belov, V. N. Tatarinov, A. I. Manevich, and M. A. Pasishnichenko (2022), Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste, Applied Sciences, 12(4), 2010, https://doi.org/10.3390/app12042010
3. Aki, K. (1968), Seismic displacements near a fault, Journal of Geophysical Research, 73(16), 5359-5376, https://doi.org/10.1029/JB073i016p05359.
4. Aleshin, I., K. Kholodkov, I. Malygin, R. Shevchuk, and R. Sidorov (2022), Geomagnetic Survey Interpolation with the Machine Learning Approach, Russian Journal of Earth Sciences, 22, https://doi.org/10.2205/2022ES000818.
5. Allmendinger, R. W., N. Cardozo, and D. M. Fisher (2011), Structural Geology Algorithms: Vectors and Tensors, Cambridge University Press, https://doi.org/10.1017/CBO9780511920202.
6. Amante, C., and B. W. Eakins (2009), ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis.
7. Anantrasirichai, N., J. Biggs, F. Albino, P. Hill, and D. Bull (2018), Application of Machine Learning to Classification of Volcanic Deformation in Routinely Generated InSAR Data, Journal of Geophysical Research: Solid Earth, 123(8), 6592-6606, https://doi.org/10.1029/2018jb015911.
8. Batugin, A., V. Ogadzhanov, S. Han, S. Shevchuk, S. Kostikov, and A. Oborin (2022), Exploring the Nature of Seismic Events in the Underground Gas Storages Area of the Volga Federal District, Russian Journal of Earth Sciences, 22, https://doi.org/10.2205/2022ES000819.
9. Bogusz, J., A. Kłos, P. Grzempowski, and B. Kontny (2013), Modelling the Velocity Field in a Regular Grid in the Area of Poland on the Basis of the Velocities of European Permanent Stations, Pure and Applied Geophysics, 171(6), 809-833, https://doi.org/10.1007/s00024-013-0645-2.
10. Boubou, R., F. Emeriault, and R. Kastner (2010), Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling, Canadian Geotechnical Journal, 47(11), 1214-1233, https://doi.org/10.1139/T10-023.
11. Cardozo, N., and R. W. Allmendinger (2009), SSPX: A program to compute strain from displacement/velocity data, Computers & Geosciences, 35(6), 1343-1357, https://doi.org/10.1016/j.cageo.2008.05.008.
12. Dimitrios, G. A., X. Papanikolaou, A. Ganas, and D. Paradissis (2019), StrainTool: A software package to estimate strain tensor parameters (Version v1.0).
13. Dokukin, P. A., V. I. Kaftan, and R. I. Krasnoperov (2010), Influence of triangle shape in geodetic network on the results of definition of Earth surface deformations, Izvestia vuzov. Geodesy and aerophotosurveying, 5, 6-11 (in Russian).
14. Dzeboev, B. A., A. A. Soloviev, B. V. Dzeranov, J. K. Karapetyan, and N. A. Sergeeva (2019), Strong earthquake-prone areas recognition based on the algorithm with a single pure training class. II. Caucasus, M ≥ 6.0. Variable EPA method, Russian Journal of Earth Sciences, 19(6), https://doi.org/10.2205/2019ES000691.
15. Esikov, N. P. (1979), Tectonophysical aspects of analysis of recent Earth’s surface movements, Nauka, Novosibirsk.
16. Faber, R., and G. Domej (2021), 3D Computer-Assisted Geological Mapping: Testing WinGeol’s FaultTrace for semiautomatic structural geological assessment, Russian Journal of Earth Sciences, 21(1), https://doi.org/10.2205/2020ES000757.
17. Ghiasi, Y., and V. Nafisi (2015), The improvement of strain estimation using universal kriging, Acta Geodaetica et Geophysica, 50(4), 479-490, https://doi.org/10.1007/s40328-015-0103-y.
18. Goudarzi, M. A., M. Cocard, and R. Santerre (2015), GeoStrain: An open source software for calculating crustal strain rates, Computers & Geosciences, 82, 1-12, https://doi.org/10.1016/j.cageo.2015.05.007.
19. Grishchenkova, E. N. (2017), Development of a Neural Network for Earth Surface Deformation Prediction, Geotechnical and Geological Engineering, 36(4), 1953-1957, https://doi.org/10.1007/s10706-017-0438-y.
20. Gvishiani, A. D., B. A. Dzeboev, and S. M. Agayan (2016), FCaZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izvestiya, Physics of the Solid Earth, 52(4), 461-491, https://doi.org/10.1134/s1069351316040017.
21. Gvishiani, A. D., A. A. Soloviev, and B. A. Dzeboev (2020), Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review, Izvestiya, Physics of the Solid Earth, 56(1), https://doi.org/10.1134/S1069351320010048.
22. Gvishiani, A. D., M. N. Dobrovolsky, B. V. Dzeranov, and B. A. Dzeboev (2022), Big Data in Geophysics and Other Earth Sciences, Izvestiya, Physics of the Solid Earth, 58(1), https://doi.org/10.1134/S1069351322010037 (in Russian).
23. Gvishiani, A. D., V. Y. Panchenko, and I. M. Nikitina (2023), System analysis of big data for Earth sciences, Herald of the Russian Academy of Sciences, 93(6), 518-525, https://doi.org/10.31857/S0869587323060087 (in Russian).
24. IAEA-TECDOC-1987 (2021), An Introduction to Probabilistic Fault Displacement Hazard Analysis in Site Evaluation for Existing Nuclear Installation.
25. Ismail-Zadeh, A., S. Adamia, A. Chabukiani, T. Chelidze, and other (2020), Geodynamics, seismicity, and seismic hazards of the Caucasus, Earth-Science Reviews, 207, 103,222, https://doi.org/10.1016/j.earscirev.2020.103222.
26. Kaban, M. K., A. Gvishiani, R. Sidorov, A. Oshchenko, and R. I. Krasnoperov (2021), Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area, Applied Sciences, 11(2), 512, https://doi.org/10.3390/app11020512.
27. Kaftan, V. I., and V. N. Tatarinov (2021), An Analysis of Possibilities of GNSS Local Strain Monitoring Networks in Earthquake-Prone Areas, Journal of Volcanology and Seismology, 15(6), 379-386, https://doi.org/10.1134/S074204632106004X.
28. Karapetyan, J. K., R. S. Sargsyan, K. S. Kazaryan, B. V. Dzeranov, B. A. Dzeboev, and R.-K. Karapetyan (2020), Current state of exploration and actual problems of tectonics, seismology and seismotectonics of Armenia, Russian Journal of Earth Sciences, 20(2), https://doi.org/10.2205/2020es000709.
29. Kolmogorov, A. N. (1957), On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Doklady Akademii Nauk SSSR, 114(5), 953-956 (in Russian).
30. Kolmogorova, P. P., and G. I. Karataev (1975), Prediction of the velocities of modern vertical movements of the Earth’s crust by the correlation model from statistical geological and geophysical data, in Methodical issues of the study of modern movements of the Earth’s crust, pp. 182-203, IGM SB RAS (in Russian).
31. Kuzmin, Y. O. (2020), Topical issues of use of geodetic measurements at geodynamic monitoring of objects of oil and gas complex, Vestnik SSUGT (Siberian State University of Geosystems and Technologies), 25(1), 43-54, https://doi.org/10.33764/2411-1759-2020-25-1-43-54.
32. Lei, Q., and S. Loew (2021), Modelling coseismic displacements of fracture systems in crystalline rock during large earthquakes: Implications for the safety of nuclear waste repositories, International Journal of Rock Mechanics and Mining Sciences, 138, 104,590, https://doi.org/10.1016/j.ijrmms.2020.104590.
33. Manevich, A., V. Kaftan, R. Shevchuk, and D. Urmanov (2021), Modelling the horizontal velocity field of the NizhneKansk massif according to GNSS Observations, ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference, 1, 162-169, https://doi.org/10.17770/etr2021vol1.6545.
34. Manevich, A. I., and V. N. Tatarinov (2017), Application of artificial neural networks for forecasting modern crustal movements, in Geoinformation technologies - a tool for increasing the efficiency and safety of mining, vol. 5, pp. 37-48, Geophisical Center RAS (in Russian).
35. Manevich, A. I., R. V. Shevchuk, V. I. Kaftan, V. N. Tatarinov, and S. M. Zabrodin (2022), Improvement of the gnss monitoring network of the nizhne-kansky massif using a bedrock pin geodetic center, Seismic Instruments, 58(S2), S267-S280, https://doi.org/10.3103/s0747923922080084.
36. Manevich, A. I., R. V. Shevchuk, I. V. Losev, V. I. Kaftan, D. I. Urmanov, and A. I. Shakirov (2023), PyGeoStrain: A software package for calculation crustal strain (v1.0).
37. Markovich, K. I. (2020), Prediction of velocities of modern vertical movements of the earth’s crust from geodetic, geophysical and seismological data, Geodynamics & Tectonophysics, 11(2), 365-377, https://doi.org/10.5800/GT-2020-11-2-0480.
38. Matheron, G. (1970), Random Functions and their Application in Geology, in Geostatistics, pp. 79-87, Springer US, https://doi.org/10.1007/978-1-4615-7103-2_7.
39. Mazurov, B. T. (2016), Geodynamic system (kinematic and deformation model of block movements), Vestnik SSUGT, 3(35), 5-15 (in Russian).
40. Milyukov, V. K., A. P. Mironov, G. M. Steblov, V. I. Shevchenko, A. G. Kusraev, V. N. Drobyshev, and K. M. Khubaev (2015), The contemporary GPS-derived horizontal motions of the main elements of tectonic structure in the Ossetian segment of Greater Caucasus, Izvestiya, Physics of the Solid Earth, 51(4), 522-534, https://doi.org/10.1134/S1069351315040072.
41. Milyukov, V. K., A. P. Mironov, G. M. Steblov, A. N. Ovsyuchenko, E. A. Rogozhin, V. N. Drobyshev, A. G. Kusraev, K. M. Khubaev, and K.-M. Z. Torchinov (2017), Satellite geodetic monitoring of the Vladikavkaz active fault zone: First results, Izvestiya, Physics of the Solid Earth, 53(4), 598-605, https://doi.org/10.1134/S1069351317040061.
42. Mironov, A. P., V. K. Milyukov, G. M. Steblov, V. N. Drobyshev, A. G. Kusraev, and K. M. Khubaev (2021), Crustal Strains in the Ossetian Region of the Greater Caucasus Based on GNSS Measurements, Izvestiya, Atmospheric and Oceanic Physics, 57(11), 1498-1513, https://doi.org/10.1134/S0001433821110074.
43. Moss, R. E. S., and Z. E. Ross (2011), Probabilistic Fault Displacement Hazard Analysis for Reverse Faults, Bulletin of the Seismological Society of America, 101(4), 1542-1553, https://doi.org/10.1785/0120100248.
44. Negi, P., A. Goswami, and G. C. Joshi (2023), Geomorphic indices based topographic characterization of Alaknanda catchment, Western Himalaya using spatial data, Environmental Earth Sciences, 82(20), https://doi.org/10.1007/s12665-023-11158-w.
45. Nurminen, F., P. Boncio, F. Visini, B. Pace, A. Valentini, S. Baize, and O. Scotti (2020), Probability of Occurrence and Displacement Regression of Distributed Surface Rupturing for Reverse Earthquakes, Frontiers in Earth Science, 8, https://doi.org/10.3389/feart.2020.581605.
46. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 82(2), 1018-1040, https://doi.org/10.1785/BSSA0820021018.
47. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, and other (2011), Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830.
48. Petrov, V. A., V. A. Minaev, S. A. Ustinov, I. O. Nafigin, and A. B. Lexin (2021), Assessment of Seismogeodynamic Activity of Mining Areas on the Basis of 3D Geoinformation Modeling, Russian Journal of Earth Sciences, 21(6), https://doi.org/10.2205/2021ES000781.
49. Reilinger, R., S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak, and other (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research: Solid Earth, 111(B5), https://doi.org/10.1029/2005JB004051.
50. Reilinger, R. E., S. C. McClusky, B. J. Souter, M. W. Hamburger, M. T. Prilepin, A. Mishin, T. Guseva, and S. Balassanian (1997), Preliminary estimates of plate convergence in the Caucasus Collision Zone from global positioning system measurements, Geophysical Research Letters, 24(14), 1815-1818, https://doi.org/10.1029/97gl01672.
51. Różycka, M., P. Migoń, and A. Michniewicz (2017), Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland, Zeitschrift für Geomorphologie, Supplementary Issues, 61(2), 61-80, https://doi.org/10.1127/zfg_suppl/2016/0328.
52. Sandwell, D. T. (1987), Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter Data, Geophysical Research Letters, 14(2), 139-142.
53. Sedrette, S., and N. Rebai (2016), Automatic extraction of lineaments from Landsat Etm+ images and their structural interpretation: Case Study in Nefza region (North West of Tunisia), Journal of Research in Environmental and Earth Sciences, 4, 139-145.
54. Shen, Z., D. D. Jackson, and B. X. Ge (1996), Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, Journal of Geophysical Research: Solid Earth, 101(B12), 27,957-27,980, https://doi.org/10.1029/96JB02544.
55. Shen, Z., M. Wang, Y. Zeng, and F. Wang (2015), Optimal Interpolation of Spatially Discretized Geodetic Data, Bulletin of the Seismological Society of America, 105(4), 2117-2127, https://doi.org/10.1785/0120140247.
56. Shevchenko, V. I., T. V. Guseva, A. A. Lukk, A. V. Mishin, and other (1999), Modern geodynamics of the Caucasus (based on GPS measurements and seismological data), Izvestiya, Physics of the Solid Earth, 9, 3-18 (in Russian).
57. Simonov, Y. G. (1998), Morphometric analysis of relief, SGU Publishing House, Moscow-Smolensk (in Russian).
58. Sokhadze, G., M. Floyd, T. Godoladze, R. King, E. S. Cowgill, Z. Javakhishvili, G. Hahubia, and R. Reilinger (2018), Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser-Greater Caucasus continental collision, Earth and Planetary Science Letters, 481, 154-161, https://doi.org/10.1016/j.epsl.2017.10.007.
59. Srivastava, H., and E. Isaaks (1989), An Introduction to Applied Geostatistics, Oxford University Press.
60. Sun, Z., L. Sandoval, R. Crystal-Ornelas, S. M. Mousavi, J. Wang, C. Lin, and other (2022), A review of Earth Artificial Intelligence, Computers & Geosciences, 159, 105,034, https://doi.org/10.1016/j.cageo.2022.105034.
61. Tatarinov, V. N., A. I. Manevich, and I. V. Losev (2018), A system approach to geodynamic zoning based on artificial neural networks, Mining science and technology, (3), 14-25, https://doi.org/10.17073/2500-0632-2018-3-14-25 (in Russian).
62. Tatarinov, V. N., V. N. Morozov, and A. S. Batugin (2019), An underground research laboratory: new opportunities in the study of the stress-strain state and dynamics of rock mass destruction, Russian Journal of Earth Sciences, 19, ES2002, https://doi.org/10.2205/2019ES000659 (in Russian).
63. Teza, G., A. Pesci, and A. Galgaro (2008), Grid_strain and grid_strain3: Software packages for strain field computation in 2D and 3D environments, Computers & Geosciences, 34(9), 1142-1153, https://doi.org/10.1016/j.cageo.2007.07.006.
64. Tibaldi, A., F. L. Bonali, E. Russo, and N. Corti (2021), Active Kinematics of the Greater Caucasus from Seismological and GPS Data: A Review, in Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions, NATO Science for Peace and Security Series C: Environmental Security, pp. 33-57, Springer Netherlands, https://doi.org/10.1007/978-94-024-2046-3.
65. Wackernagel, H. (1994), Multivariate Geostatistics, Springer, Berlin, Germany.
66. Wu, J., C. Tang, and Y. Chen (2003), Effect of triangle shape factor on precision of crustal deformation calculated, Journal of Geodesy and Geodynamics, 23(3), 26-30.
67. Yamaga, N., and Y. Mitsui (2019), Machine Learning Approach to Characterize the Postseismic Deformation of the 2011 Tohoku-Oki Earthquake Based on Recurrent Neural Network, Geophysical Research Letters, 46(21), https://doi.org/10.1029/2019gl084578.
68. Yang, B., K. Yin, S. Lacasse, and Z. Liu (2019), Time series analysis and long short-term memory neural network to predict landslide displacement, Landslides, 16(4), 677-694, https://doi.org/10.1007/s10346-018-01127-x.
69. Youngs, R. R., W. J. Arabasz, R. E. Anderson, A. R. Ramelli, J. P. Ake, D. B. Slemmons, and other (2003), A Methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA), Earthquake Spectra, 19(1), 191-219, https://doi.org/10.1193/1.1542891.