Schmidt Institute of the Physics of the Earth Russian Academy of Sciencies
Moscow, Russian Federation
Vladikavkaz Scientific Center RAS
Russian Federation
from 01.01.2018 until now
Russian Federation
Vladikavkaz Scientific Center RAS (Geofizicheskiy institut)
Moscow, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
This paper is devoted to the review of currently functioning seismological agencies, seismic monitoring networks created, developed and supported by them, as well as earthquake catalogs produced. Particular attention is focused on international and national seismological centers and seismic networks. A historical insight about the first observations made by seismic networks completes the picture. The basic parameters of the main seismic networks and the principles of functioning for seismological centers are considered. The key characteristics of seismic catalogs that determine the criteria for their quality are discussed. The system-analytical approach to solving the urgent problem of creating the most complete and representative earthquake catalogs with a unified magnitude scale by integrating data from international, national and regional catalogs in the studied region is presented.
seismic networks; seismological agencies; earthquake catalogs; representative magnitude; magnitude scale; catalog completenes, merging earthquake catalogs
1. Abubakirov I. R., Gusev A. A., Guseva E. M., et al. Mass determination of moment magnitudes Mw and establishing the relationship between Mw and ML for moderate and small Kamchatka earthquakes // Izvestiya, Physics of the Solid Earth. — 2018. — Vol. 54, no. 1. — P. 33–47. — DOI:https://doi.org/10.1134/s1069351318010019.; DOI: https://doi.org/10.7868/S0002333718010039; EDN: https://elibrary.ru/YMWKUQ
2. Agnew D. C. History of seismology // International Handbook of Earthquake and Engineering Seismology. — Elsevier, 2002. — P. 3–11. — DOI:https://doi.org/10.1016/S0074-6142(02)80203-0.; EDN: https://elibrary.ru/OPKPZP
3. Aki K., Richards P. G. Quantitative Seismology. — 2nd ed. — Sausalito, CA : University Science Books, 2002. — 723 p.; DOI: https://doi.org/10.31857/S0002333722010033; EDN: https://elibrary.ru/SLGXHR
4. Aoi S., Asano Y., Kunugi T., et al. MOWLAS: NIED observation network for earthquake, tsunami and volcano // Earth, Planets and Space. — 2020. — Vol. 72, no. 1. — DOI:https://doi.org/10.1186/s40623-020-01250-x.; DOI: https://doi.org/10.31857/S0869587323060087; EDN: https://elibrary.ru/YCSNEI
5. Arefiev S. S., Rogozhin E. A., Bykova V. V., et al. Deep structure of the Racha earthquake source zone from seismic tomography data // Izvestiya, Physics of the Solid Earth. — 2006. — Vol. 42, no. 1. — P. 27–40. — DOI:https://doi.org/10.1134/s1069351306010034.; EDN: https://elibrary.ru/VBNMCN
6. Benz H. Building a National Seismic Monitoring Center: NEIC from 2000 to the Present // Seismological Research Letters. — 2017. — Vol. 88, 2B. — P. 457–461. — DOI:https://doi.org/10.1785/0220170034.
7. Beyreuther M., Barsch R., Krischer L., et al. ObsPy: A Python Toolbox for Seismology // Seismological Research Letters. — 2010. — Vol. 81, no. 3. — P. 530–533. — DOI:https://doi.org/10.1785/gssrl.81.3.530.; DOI: https://doi.org/10.31857/S0002333723020096; EDN: https://elibrary.ru/LIGGSU
8. Cauzzi C., Bieńkowski J., Custódio S., et al. ORFEUS Services and Activities to Promote Observational Seismology in Europe and beyond // EGU General Assembly. — 2021. — DOI:https://doi.org/10.5194/egusphere-egu21-6119.
9. Coyne J., Bobrov D., Bormann P., et al. CTBTO: Goals, Networks, Data Analysis and Data Availability // New Manual of Seismological Observatory Practice 2 (NMSOP2). — Deutsches GeoForschungsZentrum GFZ, 2012. — DOI:https://doi.org/10.2312/GFZ.NMSOP-2_ch17.
10. Dai G., An Y. China Earthquake Administration: Chinese Seismic Network // Summary of the Bulletin of the International Seismological Centre. — 2020. — Vol. 54, no. II. — P. 28–40. — DOI:https://doi.org/10.31905/XWIVRBRI.
11. Dewey J., Byerly P. The Early History of Seismometry (to 1900) // Bulletin of the Seismological Society of America. — 1969. — Vol. 59, no. 1. — P. 183–287.
12. Di Giacomo D., Harris J., Storchak D. A. Complementing regional moment magnitudes to GCMT: a perspective from the rebuilt International Seismological Centre Bulletin // Earth System Science Data. — 2021. — Vol. 13, no. 5. — P. 1957–1985. — DOI:https://doi.org/10.5194/essd-13-1957-2021.
13. Engdahl E. R., Di Giacomo D., Sakarya B., et al. ISC-EHB 1964–2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity // Earth and Space Science. — 2020. — Vol. 7, no. 1. — DOI:https://doi.org/10.1029/2019EA000897.; DOI: https://doi.org/10.1186/s40623-020-01250-x; EDN: https://elibrary.ru/PMRJEB
14. Engdahl E. R., Villaseñor A. Global seismicity: 1900–1999 // International Handbook of Earthquake Engineering and Seismology. — Elsevier, 2002. — P. 665–690. — DOI:https://doi.org/10.1016/S0074-6142(02)80244-3.
15. Golitsyn B. Lectures on seismometry. — St. Petersburg : Imperial Academy of Sciences, 1912. — 654 p.
16. GS RAS. Earthquakes in Northern Eurasia. — 2023a.
17. GS RAS. Earthquakes in Russia in 2021. — 2023b.
18. Gutenberg B. Travel time curves at small distances, and wave velocities in southern California // Gerlands Beitrage zur Geophysik. — 1932. — Vol. 35. — P. 6–45.
19. Gutenberg B. Magnitude determination for deep-focus earthquakes // Bulletin of the Seismological Society of America. — 1945. — Vol. 35, no. 3. — P. 117–130. — DOI:https://doi.org/10.1785/BSSA0350030117.
20. Gvishiani A. D., Dobrovolsky M. N., Dzeranov B. V., et al. Big Data in Geophysics and Other Earth Sciences // Izvestiya, Physics of the Solid Earth. — 2022a. — Vol. 58, no. 1. — P. 1–29. — DOI:https://doi.org/10.1134/s1069351322010037.; DOI: https://doi.org/10.5194/essd-13-1957-2021; EDN: https://elibrary.ru/WKOPYC
21. Gvishiani A. D., Panchenko V. Y., Nikitina I. M. Big Data System Analysis for Geosciences // Herald of the Russian Academy of Sciences. — 2023. — Vol. 93, no. 6. — P. 518–525. — DOI:https://doi.org/10.31857/S0869587323060087.
22. Gvishiani A. D., Vorobieva I. A., Shebalin P. N., et al. Integrated Earthquake Catalog of the Eastern Sector of the Russian Arctic // Applied Sciences. — 2022b. — Vol. 12, no. 10. — P. 5010. — DOI:https://doi.org/10.3390/app12105010.
23. Haslinger F., Basili R., Bossu R., et al. Coordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology // Annals of Geophysics. — 2022. — Vol. 65, no. 2. — P. DM213. — DOI:https://doi.org/10.4401/AG-8767.
24. Havskov J., Alguacil G. Seismic networks // Modern Approaches in Geophysics. — Springer Netherlands, 2004. — P. 211–257. — DOI:https://doi.org/10.1007/978-1-4020-2969-1_8.
25. International Seismological Centre. Searching the ISC-EHB Bulletin. — DOI:https://doi.org/10.31905/PY08W6S3. — URL: https: //www.isc.ac.uk/isc-ehb/search/.; DOI: https://doi.org/10.3390/app12105010; EDN: https://elibrary.ru/UUYOCP
26. Kanamori H. The energy release in great earthquakes // Journal of Geophysical Research. — 1977. — Vol. 82, no. 20. — P. 2981–2987. — DOI:https://doi.org/10.1029/JB082i020p02981.; DOI: https://doi.org/10.4401/ag-8767; EDN: https://elibrary.ru/WUZRVF
27. Kennett B. L. N., Engdahl E. R. Traveltimes for global earthquake location and phase identification // Geophysical Journal International. — 1991. — Vol. 105, no. 2. — P. 429–465. — DOI:https://doi.org/10.1111/j.1365-246X.1991.tb06724.x.
28. Kennett B. L. N., Engdahl E. R., Buland R. Constraints on seismic velocities in the Earth from traveltimes // Geophysical Journal International. — 1995. — Vol. 122, no. 1. — P. 108–124. — DOI:https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.
29. Kisslinger C., Howell B. F. Seismology and physics of the Earth’s interior in the US (1900–1960) // International Handbook of Earthquake and Engineering Seismology. Part B. — San Diego : Academic Press, 2003.
30. Kondorskaya N. V., Fedorova I. V. Seismic stations of the Unified Survey of Seismic Observation of the USSR (USSO) as of 01.01.1990. — Moscow : IPE RAS, 1996. — 36 p.
31. Kotha S. R., Weatherill G., Bindi D., et al. Spatial Variability of Source and Attenuation Characteristics in Large Ground-Motion Datasets // EGU General Assembly. — 2020. — DOI:https://doi.org/10.5194/egusphere-egu2020-5187.
32. Mignan A., Werner M. J., Wiemer S., et al. Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs // Bulletin of the Seismological Society of America. — 2011. — Vol. 101, no. 3. — P. 1371– 1385. — DOI:https://doi.org/10.1785/0120100223.
33. Mignan A., Woessner J. Estimating the magnitude of completeness for earthquake catalogs. — Community Online Resource for Statistical Seismicity Analysis, 2012. — DOI:https://doi.org/10.5078/corssa-00180805.
34. Minina E. V. Formation and development of seismological research in Russia // IOP Conference Series: Earth and Environmental Science. — 2019. — Vol. 350, no. 1. — P. 012009. — DOI:https://doi.org/10.1088/1755-1315/350/1/012009.
35. Morozov A. N., Vaganova N. V., Asming V. E., et al. Seismicity of the Western Sector of the Russian Arctic // Izvestiya, Physics of the Solid Earth. — 2023. — Vol. 59, no. 2. — P. 209–241. — DOI:https://doi.org/10.1134/s106935132302009x.
36. New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977 / ed. by N. V. Kondorskaya, N. V. Shebalin. — Translated, Published by World Data Center A for Solid Earth Geophysics, 1982. — 608 p.; DOI: https://doi.org/10.1088/1755-1315/350/1/012009; EDN: https://elibrary.ru/FFSAIP
37. Oliver J., Murphy L. WWNSS: seismology’s global network of observing stations // Science. — 1971. — Vol. 174. — P. 254–261.; EDN: https://elibrary.ru/IDJWLL
38. Ozawa S., Nishimura T., Suito H., et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake // Nature. — 2011. — Vol. 475, no. 7356. — P. 373–376. — DOI:https://doi.org/10.1038/nature10227.; ; EDN: https://elibrary.ru/OMKVYX
39. Rautian T. G., Khalturin V. I., Fujita K., et al. Origins and Methodology of the Russian Energy K-Class System and Its Relationship to Magnitude Scales // Seismological Research Letters. — 2007. — Vol. 78, no. 6. — P. 579–590. — DOI:https://doi.org/10.1785/gssrl.78.6.579.
40. Richter C. F. An instrumental earthquake magnitude scale // Bulletin of the Seismological Society of America. — 1935. — Vol. 25, no. 1. — P. 1–32. — DOI:https://doi.org/10.1785/BSSA0250010001.
41. Ringler A. T., Steim J., Wilson D. C., et al. Improvements in seismic resolution and current limitations in the Global Seismographic Network // Geophysical Journal International. — 2019. — Vol. 220, no. 1. — P. 508–521. — DOI:https://doi.org/10.1093/gji/ggz473.
42. Roult G., Montagner J.-P., Romanowicz B., et al. The GEOSCOPE Program: Progress and Challenges during the Past 30 Years // Seismological Research Letters. — 2013. — Vol. 84, no. 2. — P. 250–250. — DOI:https://doi.org/10.1785/0220120193.
43. Shebalin P. N., Narteau C., Baranov S. V. Earthquake productivity law // Geophysical Journal International. — 2020. — Vol. 222, no. 2. — P. 1264–1269. — DOI:https://doi.org/10.1093/gji/ggaa252.; ; EDN: https://elibrary.ru/IHQXAK
44. Storchak D. A., Di Giacomo D., Engdahl E. R., et al. The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction // Physics of the Earth and Planetary Interiors. — 2015. — Vol. 239. — P. 48–63. — DOI:https://doi.org/10.1016/j.pepi.2014.06.009.
45. Suarez G., Eck T. van, Giardini D., et al. The International Federation of Digital Seismograph Networks (FDSN): An Integrated System of Seismological Observatories // IEEE Systems Journal. — 2008. — Vol. 2, no. 3. — P. 431–438. — DOI:https://doi.org/10.1109/jsyst.2008.2003294.
46. U.S. Geological Survey. Advanced National Seismic System—Current status, development opportunities, and priorities for 2017-2027. — 2017. — 32 p. — DOI:https://doi.org/10.3133/cir1429.
47. Vallée M., Charléty J., Ferreira A. M. G., et al. SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution: Wave deconvolution and earthquake parameters // Geophysical Journal International. — 2010. — Vol. 184, no. 1. — P. 338–358. — DOI:https://doi.org/10.1111/j.1365-246X.2010.04836.x.
48. Vorobieva I., Narteau C., Shebalin P., et al. Multiscale Mapping of Completeness Magnitude of Earthquake Catalogs // Bulletin of the Seismological Society of America. — 2013. — Vol. 103, no. 4. — P. 2188–2202. — DOI:https://doi.org/10.1785/0120120132.; ; EDN: https://elibrary.ru/RFMSRF
49. Vorobieva I. A., Dzeboev B. A., Dzeranov B. V., et al. Integrated Earthquake Catalog of the Ossetian Sector of the Greater Caucasus // Applied Sciences. — 2024. — Vol. 14, no. 1. — P. 172. — DOI:https://doi.org/10.3390/app14010172.; ; EDN: https://elibrary.ru/BCSDJR
50. Vorobieva I. A., Gvishiani A. D., Dzeboev B. A., et al. Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogs // Frontiers in Earth Science. — 2022. — Vol. 10. — DOI:https://doi.org/10.3389/feart.2022.820277.; ; EDN: https://elibrary.ru/PHORTN
51. Vorobieva I. A., Gvishiani A. D., Shebalin P. N., et al. Integrated Earthquake Catalog II: The Western Sector of the Russian Arctic // Applied Sciences. — 2023a. — Vol. 13, no. 12. — P. 7084. — DOI:https://doi.org/10.3390/app13127084.; ; EDN: https://elibrary.ru/UFUMJT
52. Vorobieva I. A., Gvishiani A. D., Shebalin P. N., et al. Integrated Earthquake Catalog III: Gakkel Ridge, Knipovich Ridge, and Svalbard Archipelago // Applied Sciences. — 2023b. — Vol. 13, no. 22. — P. 12422. — DOI:https://doi.org/10.3390/app132212422.; ; EDN: https://elibrary.ru/LVTRAN
53. Wadati K. Shallow and deep earthquakes // Geophysical Magazine. — 1928. — Vol. 1. — P. 162–202.
54. Wadati K. Shallow and deep earthquakes, 3rd paper // Geophysical Magazine. — 1931. — Vol. 4. — P. 231–283.
55. Wang Z. Seismic Hazard Assessment: Issues and Alternatives // Pure and Applied Geophysics. — 2010. — Vol. 168, no. 1/2. — P. 11–25. — DOI:https://doi.org/10.1007/s00024-010-0148-3.; ; EDN: https://elibrary.ru/DSJYZH
56. Weston J., Engdahl E. R., Harris J., et al. ISC-EHB: reconstruction of a robust earthquake data set // Geophysical Journal International. — 2018. — Vol. 214, no. 1. — P. 474–484. — DOI:https://doi.org/10.1093/gji/ggy155.
57. Wiemer S. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan // Bulletin of the Seismological Society of America. — 2000. — Vol. 90, no. 4. — P. 859–869. — DOI:https://doi.org/10.1785/0119990114.; ; EDN: https://elibrary.ru/XNZZQH
58. Woodhouse J. H., Deuss A. Theory and Observations - Earth’s Free Oscillations // Treatise on Geophysics. — Elsevier, 2015. — P. 79–115. — DOI:https://doi.org/10.1016/B978-0-444-53802-4.00002-6.
59. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // Journal of Geophysical Research: Solid Earth. — 2013. — Vol. 118, no. 6. — P. 2847–2864. — DOI:https://doi.org/10.1002/jgrb.50179.; ; EDN: https://elibrary.ru/KYWFCA
60. Zaliapin I., Ben-Zion Y. A global classification and characterization of earthquake clusters // Geophysical Journal International. — 2016. — Vol. 207, no. 1. — P. 608–634. — DOI:https://doi.org/10.1093/gji/ggw300.