Мировые сейсмические сети и каталоги землетрясений
Аннотация и ключевые слова
Аннотация (русский):
Статья посвящена обзору функционирующих в настоящее время сейсмологических агентств, создаваемых, развиваемых и поддерживаемых ими сейсмических мониторинговых сетей, а также производимых каталогов землетрясений. Особое внимание сфокусировано на международных и национальных сейсмологических центрах и сейсмических сетях. Исторический экскурс о первых наблюдениях, выполняемых сейсмическими сетями, дополняет картину. Рассмотрены базовые параметры основных сейсмических сетей и принципы функционирования сейсмологических центров. Обсуждены ключевые характеристики сейсмических каталогов, определяющие критерии их качества. Приведен системно-аналитический подход к решению актуальной задачи создания наиболее полных и представительных каталогов землетрясений с унифицированной магнитудной шкалой путем интегрирования в изучаемом регионе воедино данных из международных, национальных и региональных каталогов.

Ключевые слова:
сейсмические сети; сейсмологические агенства; каталоги землетрясений; представительная магнитуда; шкала магнитуд; полнота каталога, объединение каталогов землетрясений
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Абубакиров И. Р., Гусев А. А., Гусева Е. М. и др. Массовое определение моментных магнитуд Mw и установление связи между Mw и Ml для умеренных и слабых Камчатских землетрясений // Физика Земли. — 2018. — № 1. — С. 37—51. — DOI:https://doi.org/10.7868/S0002333718010039.

2. Арефьев С. С., Рогожин Е. А., Быкова В. В. и др. Глубинная структура очаговой зоны Рачинского землетрясения по сейсмотомографическим данным // Физика Земли. — 2006. — № 1. — С. 30—44.

3. Гвишиани А. Д., Добровольский М. Н., Дзеранов Б. В. и др. Большие данные в геофизике и других науках о Земле // Физика Земли. — 2022. — № 1. — С. 3—34. — DOI:https://doi.org/10.31857/S0002333722010033.

4. Гвишиани А. Д., Панченко В. Я., Никитина И. М. Системный анализ Больших Данных для наук о Земле // Вестник Российской академии наук. — 2023. — Т. 93, № 6. — С. 518—525. — DOI:https://doi.org/10.31857/S0869587323060087.

5. Голицын Б. Б. Лекции по сейсмометрии. — СПб : Типография Императорской Академии Наук, 1912. — 654 с.

6. Кондорская Н. В., Федорова И. В. Сейсмические станции Единой системы сейсмических наблюдений СССР (ЕССН): На 01.01.90. — Москва : ОИФЗ РАН, 1996. — 36 с.

7. Морозов А. Н., Ваганова Н. В., Асминг В. Э. и др. Сейсмичность западного сектора Российской Арктики // Физика Земли. — 2023. — № 2. — С. 115—148. — DOI:https://doi.org/10.31857/S0002333723020096.

8. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. / под ред. Н. В. Кондорская, Н. В. Шебалин. — Наука, 1977. — 536 с.

9. ФИЦ ЕГС РАН. Землетрясения России в 2021 году. — 2023a.

10. ФИЦ ЕГС РАН. Землетрясения Северной Евразии. — 2023b.

11. Agnew D. C. History of seismology // International Handbook of Earthquake and Engineering Seismology. — Elsevier, 2002. — P. 3–11. — DOI:https://doi.org/10.1016/S0074-6142(02)80203-0.

12. Aki K., Richards P. G. Quantitative Seismology. — 2nd ed. — Sausalito, CA : University Science Books, 2002. — 723 p.

13. Aoi S., Asano Y., Kunugi T., et al. MOWLAS: NIED observation network for earthquake, tsunami and volcano // Earth, Planets and Space. — 2020. — Vol. 72, no. 1. — DOI:https://doi.org/10.1186/s40623-020-01250-x.

14. Benz H. Building a National Seismic Monitoring Center: NEIC from 2000 to the Present // Seismological Research Letters. — 2017. — Vol. 88, 2B. — P. 457–461. — DOI:https://doi.org/10.1785/0220170034.

15. Beyreuther M., Barsch R., Krischer L., et al. ObsPy: A Python Toolbox for Seismology // Seismological Research Letters. — 2010. — Vol. 81, no. 3. — P. 530–533. — DOI:https://doi.org/10.1785/gssrl.81.3.530.

16. Cauzzi C., Bieńkowski J., Custódio S., et al. ORFEUS Services and Activities to Promote Observational Seismology in Europe and beyond // EGU General Assembly. — 2021. — DOI:https://doi.org/10.5194/egusphere-egu21-6119.

17. Coyne J., Bobrov D., Bormann P., et al. CTBTO: Goals, Networks, Data Analysis and Data Availability // New Manual of Seismological Observatory Practice 2 (NMSOP2). — Deutsches GeoForschungsZentrum GFZ, 2012. — DOI:https://doi.org/10.2312/GFZ.NMSOP-2_ch17.

18. Dai G., An Y. China Earthquake Administration: Chinese Seismic Network // Summary of the Bulletin of the International Seismological Centre. — 2020. — Vol. 54, no. II. — P. 28–40. — DOI:https://doi.org/10.31905/XWIVRBRI.

19. Dewey J., Byerly P. The Early History of Seismometry (to 1900) // Bulletin of the Seismological Society of America. — 1969. — Vol. 59, no. 1. — P. 183–287.

20. Di Giacomo D., Harris J., Storchak D. A. Complementing regional moment magnitudes to GCMT: a perspective from the rebuilt International Seismological Centre Bulletin // Earth System Science Data. — 2021. — Vol. 13, no. 5. — P. 1957–1985. — DOI:https://doi.org/10.5194/essd-13-1957-2021.

21. Engdahl E. R., Di Giacomo D., Sakarya B., et al. ISC-EHB 1964–2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity // Earth and Space Science. — 2020. — Vol. 7, no. 1. — DOI:https://doi.org/10.1029/2019EA000897.

22. Engdahl E. R., Villaseñor A. Global seismicity: 1900–1999 // International Handbook of Earthquake Engineering and Seismology. — Elsevier, 2002. — P. 665–690. — DOI:https://doi.org/10.1016/S0074-6142(02)80244-3.

23. Gutenberg B. Travel time curves at small distances, and wave velocities in southern California // Gerlands Beitrage zur Geophysik. — 1932. — Vol. 35. — P. 6–45.

24. Gutenberg B. Magnitude determination for deep-focus earthquakes // Bulletin of the Seismological Society of America. — 1945. — Vol. 35, no. 3. — P. 117–130. — DOI:https://doi.org/10.1785/BSSA0350030117.

25. Gvishiani A. D., Vorobieva I. A., Shebalin P. N., et al. Integrated Earthquake Catalog of the Eastern Sector of the Russian Arctic // Applied Sciences. — 2022. — Vol. 12, no. 10. — P. 5010. — DOI:https://doi.org/10.3390/app12105010.

26. Haslinger F., Basili R., Bossu R., et al. Coordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology // Annals of Geophysics. — 2022. — Vol. 65, no. 2. — P. DM213. — DOI:https://doi.org/10.4401/AG-8767.

27. Havskov J., Alguacil G. Seismic networks // Modern Approaches in Geophysics. — Springer Netherlands, 2004. — P. 211–257. — DOI:https://doi.org/10.1007/978-1-4020-2969-1_8.

28. International Seismological Centre. Searching the ISC-EHB Bulletin. — DOI: 10 . 31905 / PY08W6S3. — URL: https://www.isc.ac.uk/isc-ehb/search/.

29. Kanamori H. The energy release in great earthquakes // Journal of Geophysical Research. — 1977. — Vol. 82, no. 20. — P. 2981–2987. — DOI:https://doi.org/10.1029/JB082i020p02981.

30. Kennett B. L. N., Engdahl E. R. Traveltimes for global earthquake location and phase identification // Geophysical Journal International. — 1991. — Vol. 105, no. 2. — P. 429–465. — DOI:https://doi.org/10.1111/j.1365-246X.1991.tb06724.x.

31. Kennett B. L. N., Engdahl E. R., Buland R. Constraints on seismic velocities in the Earth from traveltimes // Geophysical Journal International. — 1995. — Vol. 122, no. 1. — P. 108–124. — DOI:https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.

32. Kisslinger C., Howell B. F. Seismology and physics of the Earth’s interior in the US (1900–1960) // International Handbook of Earthquake and Engineering Seismology. Part B. — San Diego : Academic Press, 2003.

33. Kotha S. R., Weatherill G., Bindi D., et al. Spatial Variability of Source and Attenuation Characteristics in Large Ground-Motion Datasets // EGU General Assembly. — 2020. — DOI:https://doi.org/10.5194/egusphere-egu2020-5187.

34. Mignan A., Werner M. J., Wiemer S., et al. Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs // Bulletin of the Seismological Society of America. — 2011. — Vol. 101, no. 3. — P. 1371–1385. — DOI:https://doi.org/10.1785/0120100223.

35. Mignan A., Woessner J. Estimating the magnitude of completeness for earthquake catalogs. — Community Online Resource for Statistical Seismicity Analysis, 2012. — DOI:https://doi.org/10.5078/corssa-00180805.

36. Minina E. V. Formation and development of seismological research in Russia // IOP Conference Series: Earth and Environmental Science. — 2019. — Vol. 350, no. 1. — P. 012009. — DOI:https://doi.org/10.1088/1755-1315/350/1/012009.

37. Oliver J., Murphy L. WWNSS: seismology’s global network of observing stations // Science. — 1971. — Vol. 174. — P. 254–261.

38. Ozawa S., Nishimura T., Suito H., et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake // Nature. — 2011. — Vol. 475, no. 7356. — P. 373–376. — DOI:https://doi.org/10.1038/nature10227.

39. Rautian T. G., Khalturin V. I., Fujita K., et al. Origins and Methodology of the Russian Energy K-Class System and Its Relationship to Magnitude Scales // Seismological Research Letters. — 2007. — Vol. 78, no. 6. — P. 579–590. — DOI:https://doi.org/10.1785/gssrl.78.6.579.

40. Richter C. F. An instrumental earthquake magnitude scale // Bulletin of the Seismological Society of America. — 1935. — Vol. 25, no. 1. — P. 1–32. — DOI:https://doi.org/10.1785/BSSA0250010001.

41. Ringler A. T., Steim J., Wilson D. C., et al. Improvements in seismic resolution and current limitations in the Global Seismographic Network // Geophysical Journal International. — 2019. — Vol. 220, no. 1. — P. 508–521. — DOI:https://doi.org/10.1093/gji/ggz473.

42. Roult G., Montagner J.-P., Romanowicz B., et al. The GEOSCOPE Program: Progress and Challenges during the Past 30 Years // Seismological Research Letters. — 2013. — Vol. 84, no. 2. — P. 250–250. — DOI:https://doi.org/10.1785/0220120193.

43. Shebalin P. N., Narteau C., Baranov S. V. Earthquake productivity law // Geophysical Journal International. — 2020. — Vol. 222, no. 2. — P. 1264–1269. — DOI:https://doi.org/10.1093/gji/ggaa252.

44. Storchak D. A., Di Giacomo D., Engdahl E. R., et al. The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction // Physics of the Earth and Planetary Interiors. — 2015. — Vol. 239. — P. 48–63. — DOI:https://doi.org/10.1016/j.pepi.2014.06.009.

45. Suarez G., Eck T. van, Giardini D., et al. The International Federation of Digital Seismograph Networks (FDSN): An Integrated System of Seismological Observatories // IEEE Systems Journal. — 2008. — Vol. 2, no. 3. — P. 431–438. — DOI:https://doi.org/10.1109/jsyst.2008.2003294.

46. U.S. Geological Survey. Advanced National Seismic System—Current status, development opportunities, and priorities for 2017-2027. — 2017. — 32 p. — DOI:https://doi.org/10.3133/cir1429.

47. Vallée M., Charléty J., Ferreira A. M. G., et al. SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution: Wave deconvolution and earthquake parameters // Geophysical Journal International. — 2010. — Vol. 184, no. 1. — P. 338–358. — DOI:https://doi.org/10.1111/j.1365-246X.2010.04836.x.

48. Vorobieva I., Narteau C., Shebalin P., et al. Multiscale Mapping of Completeness Magnitude of Earthquake Catalogs // Bulletin of the Seismological Society of America. — 2013. — Vol. 103, no. 4. — P. 2188–2202. — DOI:https://doi.org/10.1785/0120120132.

49. Vorobieva I. A., Dzeboev B. A., Dzeranov B. V., et al. Integrated Earthquake Catalog of the Ossetian Sector of the Greater Caucasus // Applied Sciences. — 2024. — Vol. 14, no. 1. — P. 172. — DOI:https://doi.org/10.3390/app14010172.

50. Vorobieva I. A., Gvishiani A. D., Dzeboev B. A., et al. Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogs // Frontiers in Earth Science. — 2022. — Vol. 10. — DOI:https://doi.org/10.3389/feart.2022.820277.

51. Vorobieva I. A., Gvishiani A. D., Shebalin P. N., et al. Integrated Earthquake Catalog II: The Western Sector of the Russian Arctic // Applied Sciences. — 2023a. — Vol. 13, no. 12. — P. 7084. — DOI:https://doi.org/10.3390/app13127084.

52. Vorobieva I. A., Gvishiani A. D., Shebalin P. N., et al. Integrated Earthquake Catalog III: Gakkel Ridge, Knipovich Ridge, and Svalbard Archipelago // Applied Sciences. — 2023b. — Vol. 13, no. 22. — P. 12422. — DOI:https://doi.org/10.3390/app132212422.

53. Wadati K. Shallow and deep earthquakes // Geophysical Magazine. — 1928. — Vol. 1. — P. 162–202.

54. Wadati K. Shallow and deep earthquakes, 3rd paper // Geophysical Magazine. — 1931. — Vol. 4. — P. 231–283.

55. Wang Z. Seismic Hazard Assessment: Issues and Alternatives // Pure and Applied Geophysics. — 2010. — Vol. 168, no. 1/2. — P. 11–25. — DOI:https://doi.org/10.1007/s00024-010-0148-3.

56. Weston J., Engdahl E. R., Harris J., et al. ISC-EHB: reconstruction of a robust earthquake data set // Geophysical Journal International. — 2018. — Vol. 214, no. 1. — P. 474–484. — DOI:https://doi.org/10.1093/gji/ggy155.

57. Wiemer S. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan // Bulletin of the Seismological Society of America. — 2000. — Vol. 90, no. 4. — P. 859–869. — DOI:https://doi.org/10.1785/0119990114.

58. Woodhouse J. H., Deuss A. Theory and Observations - Earth’s Free Oscillations // Treatise on Geophysics. — Elsevier, 2015. — P. 79–115. — DOI:https://doi.org/10.1016/B978-0-444-53802-4.00002-6.

59. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // Journal of Geophysical Research: Solid Earth. — 2013. — Vol. 118, no. 6. — P. 2847–2864. — DOI:https://doi.org/10.1002/jgrb.50179.

60. Zaliapin I., Ben-Zion Y. A global classification and characterization of earthquake clusters // Geophysical Journal International. — 2016. — Vol. 207, no. 1. — P. 608–634. — DOI:https://doi.org/10.1093/gji/ggw300.

Войти или Создать
* Забыли пароль?