Spatial Variability of the Hydrochemical Structure in Bottom Gravity Current in the Vema Fracture Zone
Abstract and keywords
Abstract (English):
The Vema Fracture Zone is located in the North Atlantic Ridge and extends along 11°N from 38 to 46°W. It is the main pathway for the spreading of Antarctic Bottom Water to the Northeast Atlantic. Due to its location and structure, the Vema Fracture Zone is an excellent object for studying the properties of the bottom gravity flow. An oceanographic section along the entire Vema Fracture Zone was carried out during cruise 52 of the R/V “Akademik Boris Petrov” in November–December 2022. In our work, we analyzed 25 oceanographic stations; at 15 stations, dissolved oxygen and nutrients were also determined. Such studies of the structure of the bottom gravity flow of Antarctic Bottom Water in the central channel of the Vema Fracture Zone based on high spatial resolution in situ data were made for the first time. A supercritical flow accompanied by a hydraulic jump was detected behind the main sill of the fracture zone. Simultaneous measurements of dissolved oxygen, silicate, and phosphate allowed us to examine the hydrochemical structure along the entire Vema Fracture Zone. Its analysis revealed high correlation between the distribution of hydrochemical and oceanographic parameters in both the stable flow and turbulent regimes of the current.

Keywords:
bottom gravity current, dissolved oxygen, silicate, hydraulic jump, Antarctic Bottom Water, Vema Fracture Zone
Text
Publication text (PDF): Read Download
References

1. Borisov, D. G., D. I. Frey, E. V. Ivanova, et al. (2023), Unveiling the contourite depositional system in the Vema Fracture Zone (Central Atlantic), Scientific Reports, 13(1), https://doi.org/10.1038/s41598-023-40401-4.

2. Broecker, W. (2010), The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change, Princeton University Press, https://doi.org/10.1515/9781400834716.

3. Campos, E. J. D., van M. C. Caspel, W. Zenk, et al. (2021), Warming Trend in Antarctic Bottom Water in the Vema Channel in the South Atlantic, Geophysical Research Letters, 48(19), https://doi.org/10.1029/2021GL094709.

4. Chesnokov, A. A., S. L. Gavrilyuk, and V. Y. Liapidevskii (2022), Mixing and nonlinear internal waves in a shallow flow of a three-layer stratified fluid, Physics of Fluids, 34(7), https://doi.org/10.1063/5.0093754.

5. Egbert, G. D., and S. Y. Erofeeva (2002), Efficient Inverse Modeling of Barotropic Ocean Tides, Journal of Atmospheric and Oceanic Technology, 19(2), 183–204, https://doi.org/10.1175/1520-0426(2002)0192.0.co;2.

6. Eittreim, S. L., P. E. Biscaye, and S. S. Jacobs (1983), Bottom-water observations in the Vema fracture zone, Journal of Geophysical Research: Oceans, 88(C4), 2609–2614, https://doi.org/10.1029/JC088iC04p02609.

7. Emel’yanov, E. M., V. A. Gritsenko, and V. D. Egorikhin (2004), Near-bottom circulation in the gdansk deep of the baltic sea: Bottom sediments and dynamcis of inflows of the north sea waters, Oceanology, 44(2), 261–273, EDN: LILRZH.

8. Fischer, J., M. Rhein, F. Schott, and L. Stramma (1996), Deep water masses and transports in the Vema Fracture Zone, Deep Sea Research Part I: Oceanographic Research Papers, 43(7), 1067–1074, https://doi.org/10.1016/0967-0637(96)00044-1.

9. Frey, D., D. Borisov, V. Fomin, E. Morozov, and O. Levchenko (2022), Modeling of bottom currents for estimating their erosional-depositional potential in the Southwest Atlantic, Journal of Marine Systems, 230, 103,736, https://doi.org/10.1016/j.jmarsys.2022.103736.

10. Frey, D. I., E. G. Morozov, V. V. Fomin, and N. A. Diansky (2018), Spatial Structure of the Antarctic Water Flow in the Vema Fracture Zone of the Mid-Atlantic Ridge, Izvestiya, Atmospheric and Oceanic Physics, 54(6), 621–625, https://doi.org/10.1134/S0001433818060063.

11. Frey, D. I., E. G. Morozov, V. V. Fomin, N. A. Diansky, and R. Y. Tarakanov (2019), Regional Modeling of Antarctic Bottom Water Flows in the Key Passages of the Atlantic, Journal of Geophysical Research: Oceans, 124(11), 8414–8428, https://doi.org/10.1029/2019JC015315.

12. Frey, D. I., E. G. Morozov, and D. A. Smirnova (2023), Sea level anomalies affect the ocean circulation at abyssal depths, Scientific Reports, 13(1), https://doi.org/10.1038/s41598-023-48074-9.

13. Galkin, S. V., K. V. Minin, A. A. Udalov, et al. (2021), Benthic Assemblages of the Powell Basin, Oceanology, 61(2), 204–219, https://doi.org/10.1134/S0001437021020053.

14. GEBCO Bathymetric Compilation Group 2023 (2023), The GEBCO_2023 Grid - a continuous terrain model of the global oceans and land, https://doi.org/10.5285/F98B053B-0CBC-6C23-E053-6C86ABC0AF7B.

15. Glazkova, T., F. J. Hernández-Molina, E. Dorokhova, et al. (2022), Sedimentary processes in the Discovery Gap (CentralNE Atlantic): An example of a deep marine gateway, Deep Sea Research Part I: Oceanographic Research Papers, 180, 103,681, https://doi.org/10.1016/j.dsr.2021.103681.

16. Grasshoff, K., K. Kremling, and M. Ehrhardt (Eds.) (1999), Methods of Seawater Analysis, Wiley, Hoboken, https://doi.org/10.1002/9783527613984.

17. Hacker, J. N., and P. F. Linden (2002), Gravity currents in rotating channels. Part 1. Steady-state theory, Journal of Fluid Mechanics, 457, 295–324, https://doi.org/10.1017/S0022112001007662.

18. Hall, M. M., M. McCartney, and J. A. Whitehead (1997), Antarctic Bottom Water Flux in the Equatorial Western Atlantic, Journal of Physical Oceanography, 27(9), 1903–1926, https://doi.org/10.1175/1520-0485(1997)0272.0.CO;2.

19. Hansen, B., W. R. Turrell, and S. Østerhus (2001), Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950, Nature, 411(6840), 927–930, https://doi.org/10.1038/35082034.

20. Hansen, H. P., and F. Koroleff (1999), Determination of nutrients, in Methods of Seawater Analysis, pp. 159–228, Wiley, https://doi.org/10.1002/9783527613984.ch10.

21. Heezen, B. C., R. D. Gerard, and M. Tharp (1964), The Vema fracture zone in the equatorial Atlantic, Journal of Geophysical Research, 69(4), 733–739, https://doi.org/10.1029/JZ069i004p00733.

22. Holfort, J., and G. Siedler (2001), The Meridional Oceanic Transports of Heat and Nutrients in the South Atlantic, Journal of Physical Oceanography, 31(1), 5–29, https://doi.org/10.1175/1520-0485(2001)0312.0.CO;2.

23. Krechik, V. A., M. V. Kapustina, D. I. Frey, et al. (2023), Properties of Antarctic Bottom Water in the Western Gap (Azores-Gibraltar Fracture Zone, Northeast Atlantic) in 2021, Deep Sea Research Part I: Oceanographic Research Papers, 202, 104,191, https://doi.org/10.1016/j.dsr.2023.104191.

24. Lawrence, G. A. (1993), The hydraulics of steady two-layer flow over a fixed obstacle, Journal of Fluid Mechanics, 254, 605–633, https://doi.org/10.1017/S0022112093002277.

25. Lawrence, G. A., and L. Armi (2022), Stationary internal hydraulic jumps, Journal of Fluid Mechanics, 936, https://doi.org/10.1017/jfm.2022.74.

26. Liao, G., B. Zhou, C. Liang, et al. (2016), Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge, Journal of Geophysical Research: Oceans, 121(1), 836–860, https://doi.org/10.1002/2015JC011053.

27. Liapidevskii, V. Y. (2004), Mixing Layer on the Lee Side of an Obstacle, Journal of Applied Mechanics and Technical Physics, 45(2), 199–203, https://doi.org/10.1023/B:JAMT.0000017582.70655.d9.

28. Mantyla, A. W., and J. L. Reid (1983), Abyssal characteristics of the World Ocean waters, Deep Sea Research Part A. Oceanographic Research Papers, 30(8), 805–833, https://doi.org/10.1016/0198-0149(83)90002-X.

29. McCartney, M. S., S. L. Bennett, and M. E. Woodgate-Jones (1991), Eastward Flow through the Mid-Atlantic Ridge at 11◦N and Its Influence on the Abyss of the Eastern Basin, Journal of Physical Oceanography, 21(8), 1089–1121, https://doi.org/10.1175/1520-0485(1991)0212.0.CO;2.

30. Morozov, E. G., R. Y. Tarakanov, and D. I. Frey (2021), Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic Ocean: Observations, Analysis, and Modeling, Springer International Publishing, https://doi.org/10.1007/978-3-030-83074-8.

31. Morozov, E. G., D. I. Frey, O. A. Zuev, et al. (2023), Antarctic Bottom Water in the Vema Fracture Zone, Journal of Geophysical Research: Oceans, 128(8), https://doi.org/10.1029/2023JC019967.

32. Orsi, A. H., G. C. Johnson, and J. L. Bullister (1999), Circulation, mixing, and production of Antarctic Bottom Water, Progress in Oceanography, 43(1), 55–109, https://doi.org/10.1016/S0079-6611(99)00004-X.

33. Pratt, L. J., and J. A. Whitehead (2008), Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere, 36, Springer New York, New York, https://doi.org/10.1007/978-0-387-49572-9.

34. Simpson, J. E. (1999), Gravity currents: In the environment and the laboratory, Cambridge University Press.

35. Slagstad, D., and T. A. McClimans (2005), Modeling the ecosystem dynamics of the Barents sea including the marginal ice zone: I. Physical and chemical oceanography, Journal of Marine Systems, 58(1–2), 1–18, https://doi.org/10.1016/j.jmarsys.2005.05.005.

36. Tarakanov, R. Y., E. G. Morozov, H. van Haren, N. I. Makarenko, and T. A. Demidova (2018), Structure of the Deep Spillway in the Western Part of the Romanche Fracture Zone, Journal of Geophysical Research: Oceans, 123(11), 8508–8531, https://doi.org/10.1029/2018JC013961.

37. Tarakanov, R. Y., E. G. Morozov, and D. I. Frey (2020), Hydraulic Continuation of the Abyssal Flow From the Vema Channel in the Southwestern Part of the Brazil Basin, Journal of Geophysical Research: Oceans, 125(6), https://doi.org/10.1029/2020JC016232.

38. Vangriesheim, A. (1980), Antarctic Bottom Water flow through the Vema Fracture Zone, Oceanologica Acta, 3(2), 199–207.

39. Visbeck, M. (2002), Deep Velocity Profiling Using Lowered Acoustic Doppler Current Profilers: Bottom Track and Inverse Solutions, Journal of Atmospheric and Oceanic Technology, 19(5), 794–807, https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2.

40. Wesson, J. C., and M. C. Gregg (1994), Mixing at Camarinal Sill in the Strait of Gibraltar, Journal of Geophysical Research: Oceans, 99(C5), 9847–9878, https://doi.org/10.1029/94JC00256.

41. Whitehead, J. A. (1989), Internal hydraulic control in rotating fluids-applications to oceans, Geophysical & Astrophysical Fluid Dynamics, 48(1–3), 169–192, https://doi.org/10.1080/03091928908219532.

42. Whitehead, J. A., and L. V. Worthington (1982), The flux and mixing rates of Antarctic bottom water within the North Atlantic, Journal of Geophysical Research: Oceans, 87(C10), 7903–7924, https://doi.org/10.1029/JC087iC10p07903.

43. Zatsepin, A. G., V. V. Kremenetskii, S. G. Poyarkov, et al. (2005), Laboratory and numerical study of gravity currents over a sloping bottom, Oceanology, 45(1), 1–10, EDN: LJKEPF.

44. Zenk, W., and E. Morozov (2007), Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel, Geophysical Research Letters, 34(14), https://doi.org/10.1029/2007GL030340.

45. Zenk, W., and M. Visbeck (2013), Structure and evolution of the abyssal jet in the Vema Channel of the South Atlantic, Deep Sea Research Part II: Topical Studies in Oceanography, 85, 244–260, https://doi.org/10.1016/j.dsr2.2012.07.033.

Login or Create
* Forgot password?