Nizhny Novgorod, Nizhny Novgorod, Russian Federation
Russian Federation
Russian Federation
Russian Federation
UDC 528.88
UDC 528.8.04
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
Remote sensing methods are widely used to monitor ongoing climate change, and the area of sea ice in the Arctic and Antarctic is used as one of the criteria. The duration of ice cover on inland waters can be used to assess processes within continents. The small size of internal waters does not allow the use of traditional methods that have proven themselves well in marine conditions. This study considers the possibility of using dual-frequency precipitation radar data to detect ice formation and destruction on small inland waters. Due to the features of backscatter at small incidence angles (< 18∘), inland waters with sizes smaller than the radar resolution (5 km) are “visible” in radar images. Using the Volga River as an example, it is shown that water-ice and ice-water transitions can be detected when analyzing radar images, and thus, possible to estimate the duration of ice cover on inland waters.
inland water, ice cover, dual-frequency precipitation radar, radar image, small incidence angles
1. AARI. The Ice Has Moved: How the Unique North Pole Platform Helps Study the Arctic. — 2023. — (In Russian). https://clck.ru/3M2VjX.
2. Bordonskii G. S., Kazantsev V. A., Kozlov A. K. Features of Dielectric Characteristics of Ice Near the Phase Transition Temperature // Proceedings of the 22nd International Conference «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». — Moscow : Space Research Institute of the Russian Academy of Sciences, 2024. — DOI:https://doi.org/10.21046/22DZZconf-2024a. — (In Russian).
3. Bordonsky G. S., Gurulev A. A., Krylov S. D. Electromagnetic loss of fresh ice in microwave range at a temperature of 0 ∘C // Journal of Communications Technology and Electronics. — 2014. — Vol. 59, no. 6. — P. 536–540. — DOI:https://doi.org/10.1134/S1064226914060060.
4. Bremen University. Sea Ice Portal. — 2025. — (visited on 29.04.2025). https://www.seaice.uni-bremen.de/start/.
5. Bureau of Meteorology. State of the Climate 2024. Cryosphere. — 2024. — http://www.bom.gov.au/state-of-theclimate/cryosphere.shtml.
6. Cooke C. L. V., Scott K. A. Estimating Sea Ice Concentration From SAR: Training Convolutional Neural Networks With Passive Microwave Data // IEEE Transactions on Geoscience and Remote Sensing. — 2019. — Vol. 57, no. 7. — P. 4735–4747. — DOI:https://doi.org/10.1109/TGRS.2019.2892723.
7. Degay A. Yu., Andreev M., Egorov V., et al. Development of methods of automatic recognition of sea ice cover based on visible and near-infrared satellite data for fishery monitoring system // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2021. — Vol. 18, no. 4. — P. 27–40. — DOI:https://doi.org/10.21046/2070-7401-2021-18-4-27-40. — (In Russian).
8. Ginzburg A., Kostyanoy A., Serykh I., et al. Climatic changes in hydrometeorological parameters of the Caspian Sea (1980-2020) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2021. — Vol. 18, no. 5. — P. 277–291. — DOI:https://doi.org/10.21046/2070-7401-2021-18-5-277-291. — (In Russian).
9. Hall D., Fagre D., Klasner F., et al. Analysis of ERS 1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies // Journal of Geophysical Research: Oceans. — 1994. — Vol. 99, no. C11. — P. 22473–22482. — DOI:https://doi.org/10.1029/94jc01391.
10. Halpern D. Satellites, oceanography and society. — Elsevier, 2000. — P. 368.
11. Hauser D., Tison C., Amiot T., et al. SWIM: The First Spaceborne Wave Scatterometer // IEEE Transactions on Geoscience and Remote Sensing. — 2017. — Vol. 55, no. 5. — P. 3000–3014. — DOI:https://doi.org/10.1109/tgrs.2017.2658672.
12. Hauser D., Tourain C., Hermozo L., et al. New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment // IEEE Transactions on Geoscience and Remote Sensing. — 2021. — Vol. 59, no. 1. — P. 5–26. — DOI:https://doi.org/10.1109/TGRS.2020.2994372.
13. JAXA. GPM Data Utilization Handbook. Version 1.0. — Japan Aerospace Exploration Agency, 2014. — P. 92.
14. Jeffries M., Morris K., Weeks W., et al. Structural and stratigraphie features and ERS 1 synthetic aperture radar backscatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991-1992 // Journal of Geophysical Research: Oceans. — 1994. — Vol. 99, no. C11. — P. 22459–22471. — DOI:https://doi.org/10.1029/94jc01479.
15. Karaev V. Yu., Panfilova M., Titchenko Yu., et al. Monitoring of Inland Waters by Dual-Frequency Precipitation Radar: First Results // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2018. — Vol. 11, no. 11. — P. 4364–4372. — DOI:https://doi.org/10.1109/JSTARS.2018.2874697.
16. Karaev V. Yu., Panfilova M. A., Mitnik L. M., et al. Features of radar probing of ice cover at small incidence angles by the example of the Okhotsk Sea // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2020. — Vol. 17, no. 7. — P. 187–202. — DOI:https://doi.org/10.21046/2070-7401-2020-17-7-187-202. — (In Russian).
17. Karaev V. Yu., Sorokin E. S., Titchenko Yu. A., et al. On the Use of Dual-Frequency Rain Radar Data for Monitoring Ice Cover of Inland Waters // Proceedings of the 22nd International Conference «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». — Moscow : Space Research Institute of the Russian Academy of Sciences, 2024. — P. 390. — DOI:https://doi.org/10.21046/22DZZconf-2024a. — (In Russian).
18. Karvonen J. Baltic Sea Ice Concentration Estimation Using SENTINEL-1 SAR and AMSR2 Microwave Radiometer Data // IEEE Transactions on Geoscience and Remote Sensing. — 2017. — Vol. 55, no. 5. — P. 2871–2883. — DOI:https://doi.org/10.1109/tgrs.2017.2655567.
19. Kim J.-W., Kim D.-J., Hwang B. J. Characterization of Arctic Sea Ice Thickness Using High-Resolution Spaceborne Polarimetric SAR Data // IEEE Transactions on Geoscience and Remote Sensing. — 2012. — Vol. 50, no. 1. — P. 13–22. — DOI:https://doi.org/10.1109/tgrs.2011.2160070.
20. Konig C., Konig T., Singha S., et al. Combined Use of Space Borne Optical and SAR Data to Improve Knowledge about Sea Ice for Shipping // Remote Sensing. — 2021. — Vol. 13, no. 23. — P. 4842. — DOI:https://doi.org/10.3390/rs13234842.
21. Kovaldov D. A., Titchenko Yu. A., Karaev V. Yu., et al. On the issue of determining the scattering diagram of ice cover using bistatic remote sensing data in the L-band // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2024. — Vol. 21, no. 6. — P. 294–308. — DOI:https://doi.org/10.21046/2070-7401-2024-21-6-294-308. — (In Russian).
22. Ladoga / ed. by V. A. Rumyantseva, S. A. Kondratieva. — Saint Petersburg : Nestor-Istoriya, 2013. — P. 468. — (In Russian).
23. Leigh S., Wing Z., Clausi D. Automated Ice-Water Classification Using Dual Polarization SAR Satellite Imagery // IEEE Transactions on Geoscience and Remote Sensing. — 2014. — Vol. 52, no. 9. — P. 5529–5539. — DOI:https://doi.org/10.1109/tgrs.2013.2290231.
24. Mätzler C., Wegmüller U. Dielectric properties of freshwater ice at microwave frequencies // Journal of Physics D: Applied Physics. — 1987. — Vol. 20, no. 12. — P. 1623–1630. — DOI:https://doi.org/10.1088/0022-3727/20/12/013.
25. Melnik Yu. A., Zubkovich S. G. Radar Methods of Earth Exploration. — Moscow : Sovetskoye radio, 1980. — P. 260. — (In Russian).
26. Microwave Remote Sensing of Sea Ice / ed. by F. D. Carsey. — American Geophysical Union, 1992. — P. 462. — (Geophysical Monograph Series). — DOI:https://doi.org/10.1029/gm068.
27. Mitnik L., Khazanova E. Radar, thermal and optical contrasts of sea ice in the Sea of Okhotsk during winter // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2019. — Vol. 16, no. 5. — P. 255–267. — DOI:https://doi.org/10.21046/2070-7401-2019-16-5-255-267. — (In Russian).
28. Nekrasov A., Khachaturian A., Abramov E., et al. On Sea Ice/Water Discrimination by Airborne Weather Radar // IEEE Access. — 2020a. — Vol. 8. — P. 120916–120922. — DOI:https://doi.org/10.1109/ACCESS.2020.3006617.
29. Nekrasov A., Khachaturian A., Labun J., et al. Towards the Sea Ice and Wind Measurement by a C-Band Scatterometer at Dual VV/HH Polarization: A Prospective Appraisal // Remote Sensing. — 2020b. — Vol. 12, no. 20. — P. 3382. — DOI:https://doi.org/10.3390/rs12203382.
30. Panfilova M., Karaev V. Sea Ice Detection by an Unsupervised Method Using Ku- and Ka-Band Radar Data at Low Incidence Angles: First Results // Remote Sensing. — 2023. — Vol. 15, no. 14. — P. 3530. — DOI:https://doi.org/10.3390/rs15143530.
31. Panfilova M., Karaev V. Sea Ice Detection Method Using the Dependence of the Radar Cross-Section on the Incidence Angle // Remote Sensing. — 2024. — Vol. 16, no. 5. — DOI:https://doi.org/10.3390/rs16050859.
32. Panfilova M., Karaev V., Mitnik L., et al. Advanced View at the Ocean Surface // Journal of Geophysical Research: Oceans. — 2020. — Vol. 125, no. 11. — e2020JC016531. — DOI: https://doi.org/10.1029/2020JC016531.
33. Patel A., Paden J., Leuschen C., et al. Fine-Resolution Radar Altimeter Measurements on Land and Sea Ice // IEEE Transactions on Geoscience and Remote Sensing. — 2015. — Vol. 53, no. 5. — P. 2547–2564. — DOI:https://doi.org/10.1109/tgrs.2014.2361641.
34. Quartly G., Rinne R., Pissaro M., et al. Review of Radar Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for Sea Level and Sea Ice Research // The Cryosphere Discuss. Preprint. — 2018. — DOI:https://doi.org/10.5194/tc-2018-148.
35. Radar methods and means of operational remote sensing of the Earth from aerospace carriers / ed. by S. N. Konyukhov, V. I. Dranovsky, V. N. Tsymbal. — Kyiv : Aviadiagnostika, 2007. — P. 440. — (In Russian).
36. Rajkumar K., Maheshwari M., Pallipad J., et al. Concurrent Use of OSCAT and AltiKa to Characterize Antarctic Ice Surface Features // Marine Geodesy. — 2015. — Vol. 38, sup1. — P. 497–509. — DOI:https://doi.org/10.1080/01490419.2014.1001047.
37. Remote Sensing in Meteorology, Oceanography and Hydrology / ed. by A. P. Cracknell. — Moscow : Mir, 1984. — P. 535. — (In Russian).
38. Remund Q., Long D. A Decade of QuikSCAT Scatterometer Sea Ice Extent Data // IEEE Transactions on Geoscience and Remote Sensing. — 2014. — Vol. 52, no. 7. — P. 4281–4290. — DOI:https://doi.org/10.1109/tgrs.2013.2281056.
39. Rivas M., Verspeek J., Verhoef A., et al. Bayesian Sea Ice Detection With the Advanced Scatterometer ASCAT // IEEE Transactions on Geoscience and Remote Sensing. — 2012. — Vol. 50, no. 7. — P. 2649–2657. — DOI:https://doi.org/10.1109/TGRS.2011.2182356.
40. Romas’ko V. Yu., Gordeeva O. S., Novikova O. G., et al. Satellite Monitoring of the Ice Edge Position on Large Rivers of Siberia // Proceedings of the 22nd International Conference «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». — Moscow : Space Research Institute of the Russian Academy of Sciences, 2024. — P. 123. — DOI:https://doi.org/10.21046/22DZZconf-2024a. — (In Russian).
41. Tikhonov V., Repina I., Raev M., et al. New Algorithm Sea Ice Cover Reconstruction on the Basis of Passive Microwave Data // Issledovaniye Zemli iz kosmosa. — 2014. — No. 2. — P. 35–43. — DOI:https://doi.org/10.7868/S0205961414020110. — (In Russian).
42. Troitskaya Yu. I., Rybushkina G., Soustova I., et al. Adaptive retracking of Jason-1 altimetry data for inland waters: the example of the Gorky Reservoir // International Journal of Remote Sensing. — 2012. — Vol. 33, no. 23. — P. 7559–7578. — DOI:https://doi.org/10.1080/01431161.2012.685972.
43. Troitskaya Yu. I., Rybushkina G. V., Soustova I. A., et al. Adaptive Retracking of Jason-1, 2 Satellite Altimetry Data for the Volga River Reservoirs // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2014. — Vol. 7, no. 5. — P. 1603–1608. — DOI:https://doi.org/10.1109/jstars.2013.2267092.
44. Wu S., Shi L., Zou B., et al. Daily Sea Ice Concentration Product over Polar Regions Based on Brightness Temperature Data from the HY-2B SMR Sensor // Remote Sensing. — 2023. — Vol. 15, no. 6. — P. 1692. — DOI:https://doi.org/10.3390/rs15061692.
45. Yan Q., Huang W. Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2016. — Vol. 9, no. 10. — P. 4795–4801. — DOI:https://doi.org/10.1109/jstars.2016.2582690.
46. Zabolotskikh E. V. Review of Methods to Retrieve Sea-Ice Parameters from Satellite Microwave Radiometer Data // Izvestiya, Atmospheric and Oceanic Physics. — 2019. — Vol. 55, no. 1. — P. 110–128. — DOI:https://doi.org/10.1134/s0001433818060166.
47. Zabolotskikh E. V., Hvorostovsky K. S., Zhivotovskaya M. A., et al. Satellite microwave remote sensing of the Arctic sea ice. Review // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2023. — Vol. 20, no. 1. — P. 9–34. — DOI:https://doi.org/10.21046/2070-7401-2023-20-1-9-34. — (In Russian).
48. Zakhatkina N. Yu., Alexandrov V. Yu., Johannessen O. N., et al. Classification of Sea Ice Types in ENVISAT Synthetic Aperture Radar Images // IEEE Transactions on Geoscience and Remote Sensing. — 2013. — Vol. 51, no. 5. — P. 2587–2600. — DOI:https://doi.org/10.1109/tgrs.2012.2212445.
49. Zhai X., Wang Z., Zheng Z., et al. Sea Ice Monitoring with CFOSAT Scatterometer Measurements Using Random Forest Classifier // Remote Sensing. — 2021. — Vol. 13, no. 22. — P. 4686. — DOI:https://doi.org/10.3390/rs13224686.
50. Zhang J., He P., Hu X., et al. Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images // Remote Sensing. — 2021. — Vol. 13, no. 24. — P. 4979. — DOI:https://doi.org/10.3390/rs13244979.
51. Zhang Z., Yu Y., Li X., et al. Arctic Sea Ice Classification Using Microwave Scatterometer and Radiometer Data During 2002-2017 // IEEE Transactions on Geoscience and Remote Sensing. — 2019. — Vol. 57, no. 8. — P. 5319–5328. — DOI:https://doi.org/10.1109/TGRS.2019.2898872.
52. Zhivotovskaya M., Zabolotskikh E., Chapron B. Spurious Arctic sea ice identification by satellite microwave radiometers under extreme weather conditions // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2019. — Vol. 16, no. 6. — P. 209–220. — DOI:https://doi.org/10.21046/2070-7401-2019-16-6-209-220. — (In Russian).




