Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
МГУ им М.Ю. Ломоносова (Физический факультет)
с 01.01.1989 по 01.01.1995
Москва, г. Москва и Московская область, Россия
с 01.01.2007 по 01.01.2023
Москва, г. Москва и Московская область, Россия
Мурманский арктический государственный университет
Апатиты, Россия
Москва, г. Москва и Московская область, Россия
Апатиты, Россия
Апатиты, Россия
Мурманский арктический государственный университет
Апатиты, Россия
Москва, г. Москва и Московская область, Россия
УДК 537.87 Распространение и излучение электромагнитных волн
УДК 517.9 Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление.
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
Ground-penetrating radar profiling on the surface of water bodies is applied in various geological and engineering studies. Here, we present the results of numerical simulation of the propagation of a video pulse electromagnetic signal in a freshwater body with gradients of the permittivity and electrical conductivity in the near-bottom layer. The method of numerical solutions of Maxwell's equations in the time domain is applied, in the general setting for rapidly changing processes, without restrictions on the magnitude of the change in the parameters of the medium. The results make it possible to explain the apparent decrease in water depth according to GPR data in comparison with the true depth and the appearance of additional reflecting boundaries on radargrams in the bottom layer.
GPR, numerical modelling, video pulse, water depth
1. Archer D.G., Wang P. (1990), The Dielectric Constant of Water and Debye-Hückel Limiting Law Slopes. Journal of Physical and Chemical Reference Data. Vol. 19, 371-411, doihttps://doi.org/10.1063/1.555853
2. Bristow, C.S., Jol H.M. (2003), An introduction to ground penetrating radar (GPR) in sediments. Geological Society, London, Special Publications. Vol. 211, 1-7, https://www.researchgate.net/publication/240675354_An_introduction_to_ground_penetrating_radar_GPR_in_sediments
3. Bobrov N.Yu., Dmitriev V.V., Krylov S.S., Parshina T.V., Pryahina G.V., Fedorova I.V. (2008), On the possibility of georadiolocation application for hydrological investigations in the river mouth areas. Vestnik of SPbSU. Series7. Geography and Geology. Issue 2, 76-81. (In Russian)
4. Catenaccio, A., Daruich Y, Magallanes C. (2003), Temperature dependence of the permittivity of water. Chemical Physics Letters. Vol. 367. 669-671, doihttps://doi.org/10.1016/S0009-2614(02)01735-9
5. Giannopoulos A. (2005), Modelling ground penetrating radar by GprMax. Construction and Building Materials, Vol. 19, No. 10, pp. 755-762, doihttps://doi.org/10.1016/j.conbuildmat.2005.06.007
6. Gulevich O.A. (2020), About scanning depth in georadiolocation considering the phenomenon of interference. Zhurnal Radioelektroniki - Journal of Radio Electronics. No.9, doihttps://doi.org/10.30898/1684-1719.2020.9.8 (In Russian)
7. Gulevich O.A., Volkomirskaya L.B., Reznikov A.E., Varenkov V.V. (2021), Typical effects of the registration technology implemented in the GPR receiver. NSG2021 Conference Proceedings, 27th European Meeting of Environmental and Engineering Geophysics, Aug 2021. Vol. 2021, 1-5, doihttps://doi.org/10.3997/2214-4609.202120153
8. Jol H.M., Smith D.G. (1991), Ground penetrating radar of northern lacustrine deltas. Canadian Journal of Earth Science. Vol. 28, 1939-1947, doihttps://doi.org/10.1139/e91-175
9. Kane S.Y. (1966), Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation. Vol. 14. No. 3, 302-307. http://home.cc.umanitoba.ca/~lovetrij/cECE7810/Papers/Yee%201966%20HiRes.pdf
10. Mingalev I.V., Mingalev O.V., Akhmetov O.I., Suvorova Z.V. (2019), Explicit Splitting Scheme for Maxwell’s Equations. Mathematical Models and Computer Simulations. Vol. 11. 551-563, doihttps://doi.org/10.1134/S2070048219040094
11. Owen B.B.; Miller R.C., Milner C.E., Cogan H.L. (1961), The Dielectric Constant Of Water As A Function Of Temperature And Pressure. J. Phys. Chem. Vol. 65 (11), 2065-2070, doihttps://doi.org/10.1021/j100828a035
12. Paul D.L., Railton C.J. (2012), Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity. IEEE Transactions on Antennas and Propagation. Vol. 60. No. 1, 310-317, doihttps://doi.org/10.1109/TAP.2011.2167940
13. Schwarzburg A.B. (1998), Video pulses and non-periodic waves in dispersing media (exactly solvable models). Uspekhi Fizicheskikh Nauk, Vol. 168, No. 1, 85-103. (In Russian)
14. Simpson J.J., Taflove A. (2007), A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz. IEEE Transactions on Antennas and Propagation. Vol. 55. No. 6, 1582-1590, doihttps://doi.org/10.1109/TAP.2007.897138
15. Simpson J.J. (2009), Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method. Surveys Geophys. Vol. 30(2), 105-130, doihttps://doi.org/10.1007/s10712-009-9063-5
16. Smith D.G., Jol H.M. (1992), Ground penetrating radar investigation of Lake Bonneville Delta, Provo Level, Brigham City, Utah. Geology. Vol. 20, 1083-1086, doihttps://doi.org/10.1130/0091-7613(1992)0202.3.CO;2
17. Somaraju R., Trumpf J. (2006), Frequency, Temperature and Salinity Variation of the Permittivity of Seawater. IEEE Transactions on Antennas and Propagation. Vol. 54, 3441-3448, doihttps://doi.org/10.1109/TAP.2006.884290
18. Warren C., Giannopoulos A., Giannakis I. (2016), gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications. Vol. 209, 163-170, doihttps://doi.org/10.1016/j.cpc.2016.08.020
19. Yu Y., Simpson J.J. (2010), An E-J collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma. IEEE Transactions on Antennas and Propagation. Vol. 58, No. 2, 469-478, doihttps://doi.org/10.1109/TAP.2009.2037706