The Ob River Water and Sediment Runoff Under Changing Climate Conditions
Аннотация и ключевые слова
Аннотация (русский):
Changes in the Ob River sediment runoff caused by current climatic and socio-economic changes in Russian Federation have a multidirectional character in the middle and lower courses of the watercourse. According to meteorological observations, the air temperature in the studied region increased by 2 °C, and annual precipitation layers by more than 80 mm/yr, while the area of agricultural land in the middle reaches of the river decreased by 40% compared to the period before 1990. A decrease in acreage in the catchment area of the middle stream caused a three-fold decrease in sediment runoff during the high water period, while the activation of thermal erosion processes in the lower reaches led to a two-fold increase in sediment runoff during the same period. As a result of water and sediment runoff modeling according to climate forecasts, it was found that by the end of the 21st century, the average annual water runoff of the Ob River for the RCP 2.6 scenario increases by 20% relative to the period 1991–2020, while sediment runoff almost does not change. At the same time, the RCP 8.5 scenario provides a decrease in water and sediment runoff.

Ключевые слова:
watercourse, sediment runoff, Arctic, climate change, anthropogenic influence, thermal erosion, forecast
Список литературы

1. Afanasiev A. N., Bogoyavlenskaya G. E., Varnakova G. M., et al. Section "Snow.Ice. Congelation" // National Atlas of Russia. Chapter 2 "Environment (Nature). Ecology". — Government of the Russian Federation, 2000. — (In Russian).

2. Alpatiev A. M., Arkhangelsky A. M. and Podoplelov N. Ya. Physical geography of the USSR. — Moscow : Vysshaya Shkola, 1973. — 334 p. — (In Russian).

3. Aparin B. F. and Matinyan N. N. Landscape structure of the North-West of Russia and typology of agricultural lands // Vestnik of Saint Petersburg University. Series 3. Biology. — 2005. — Issue 2. — P. 132–141. — EDN: https://elibrary.ru/RTSYQF ; (in Russian).

4. Chalov R. S. Riverbed science: theory, geography, practice. Volume 3: Human impacts, dangerous expressions and management of channel processes. — Moscow : KRASAND, 2020. — 640 p. — (In Russian).

5. Chalov R. S., Evstigneev V. M., Zaitsev A. A., et al. Riverbed regime of the rivers of Northern Eurasia (within the former USSR). — Moscow : MSU, 1994. — 335 p. — (In Russian).

6. Copernicus Climate Change Service. Climate Data Store: In situ total column ozone and ozone soundings from 1924 to present from the World Ozone and Ultraviolet Radiation Data Centre. — ECMWF, 2021. — https://doi.org/10.24381/cds.99842490.

7. Frolova N. L., Magritskiy D. V., Kireeva M. B., et al. Runoff and Ice Phenomena Dynamics on the Rivers of Russian Arctic Due to Anthropogenic and Climate Changes // Problems of Geography. — 2018. — P. 233–251. — EDN: https://elibrary.ru/XNFPMD ; (in Russian).

8. Global Data Center. Specialized datasets. — URL: http://meteo.ru/data/ (visited on 03/06/2025) ; (in Russian).

9. Gorshkov S. P. Exodynamic processes of the developed territories. — Moscow : Nedra, 1982. — 286 p. — (In Russian).

10. Ilyinykh V. A. Agriculture of Eastern Siberia in the late 1980s - 1990s: Dynamics, industry and organizational and production structure // Journal of Economic History & History of Economics. — 2018. — Issue 1, no. 19. — P. 59– 78. — https://doi.org/10.17150/2308-2588.2018.19(1).59-78. — (In Russian).

11. ISO 16269-4:2010. Statistical interpretation of data - Part 4: Detectionand treatment of outliers, IDT. — Moscow : StandartInform, 2017. — 53 p. — (In Russian).

12. ISO 2602:1980. Statistical interpretation of test results - Estimation of the mean - Confidence interval (MOD). — Moscow : StandartInform, 2005. — 11 p. — (In Russian).

13. Ivanov V. Dynamics of landscapes of the floodplain segment of the middle course of the Ob River over 200 years. — SAE Siberian Institute of the Future of the National Research Tomsk State University, 2020. — 76 p. — (In Russian).

14. Ivanov V. A. and Chalov S. R. Sediment budget assessment of the Ob and the Yenisei // Geomorfologiya. — 2021. — Vol. 52, no. 3. — P. 79–89. — https://doi.org/10.31857/S0435428121030056. — (In Russian). EDN: https://elibrary.ru/DBTJSY

15. Knight J. and Harrison S. Sediments and future climate // Nature Geoscience. — 2009. — No. 2. — https://doi.org/10.1038/ngeo491.

16. Kondratyev S. A. Formation of external load on reservoirs: modeling problems. — Saint-Petersburg : Nauka, 2007. — 253 p. — EDN: https://elibrary.ru/QKHCVD ; (in Russian).

17. Kondratyev S. A. and Shmakova M. V. Calculation of runoff formation in a catchment area based on the ILHM model. Certificate of registration of a computer program RU 2015614210. — Federal Service for Intellectual Property, 2015. — EDN: https://elibrary.ru/KIHVJC ; (in Russian).

18. Long-term dynamics of the water-ecological regime of the Novosibirsk reservoir / ed. by O. F. Vasiliev. — Novosibirsk : SB RAS, 2014. — 393 p. — (In Russian).

19. Lu X. X., Ran L. S., Liu S., et al. Sediment loads response to climate change: A preliminary study of eight large Chinese rivers // International Journal of Sediment Research. — 2013. — Vol. 28, no. 1. — P. 1–14. — https://doi.org/10.1016/S1001-6279(13)60013-X.

20. Magritskiy D. V. Annual runoff of suspended sediment from Russian rivers in the Arctic Ocean catchment area and its anthropogenic changes // Vestnik Moskovskogo Universiteta. Seria 5, Geografia. — 2010. — No. 6. — P. 17–24. — EDN: https://elibrary.ru/NCSYLL ; (in Russian).

21. Magritskiy D. V., Chalov S. R., Agafonova S. A., et al. Hydrological Regime of the Lower Reaches of the Ob River. Factors and Features of Its Long-Term Changes // Modern problems of hydrometeorology and sustainable development of the Russian Federation. Collection of abstracts of the All-Russian scientific and practical conference. — 2019. — P. 258–260. — EDN: https://elibrary.ru/VXWQQG ; (in Russian).

22. Magritskiy D. V., Chalov S. R., Garmaev E. Zh., et al. New Data on the Transformation of Water and Sediment Runoff into the Lena River Delta Based on the Results of Expedition Measurements in August 2022 // Arctic and Antarctic research. — 2023. — Vol. 69, no. 2. — P. 171–189. — https://doi.org/10.30758/0555-2648-2023-69-2-171-190. — (In Russian).

23. Mernild S. H., Sigsgaard C., Hasholt B., et al. Climate, river discharge and suspended sediment transport in the Zackenberg River drainage basin and Young Sound/Tyrolerfjord, Northeast Greenland, 1995-2003 // Meddelelser om Grønland. Bioscience. — 2007. — Vol. 58. — P. 24–43. — https://doi.org/10.7146/mogbiosci.v58.142638.

24. Moskalik M., O’Regan M., Promińska A., et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene // Polar Research. — 2015. — Vol. 34. — P. 1–12. — https://doi.org/10.3402/polar.v34.24964. EDN: https://elibrary.ru/VDBMKP

25. Overeem I. and Syvitski J. Changing Sediment Supply in Arctic Rivers // Sediment dynamics in changing environments. — IAHS publication No 325, 2008. — P. 391–397. EDN: https://elibrary.ru/MRRXBJ

26. Shmakova M. V. The River’s Sediment in the North-West Russian Federation // Geographical Bulletin. — 2021. — Issue 2, 2(57). — P. 65–74. — https://doi.org/10.17072/2079-7877-2021-2-65-74. — (In Russian).

27. Shmakova M. V. Sediment transport in river flows: New approaches and formulas // Modeling of Sediment Transport. — IntechOpen, 2022. — https://doi.org/10.5772/intechopen.103942. EDN: https://elibrary.ru/YXLWXH

28. Surface water resources of the USSR. Volume 15. Altai and Western Siberia. Issue 2. Middle Ob / ed. by N. A. Panina. — Leningrad : Gidrometeoizdat, 1972. — 351 p. — (In Russian).

29. Surface water resources of the USSR. Volume 15. Altai and Western Siberia. Issue 3. Lower Irtysh and Lower Ob / ed. by V. E. Vodogretsky. — Leningrad : Gidrometeoizdat, 1973. — 426 p. — (In Russian).

30. Syvitski J. P. M. and Kettner A. J. Scaling sediment flux across landscapes // Sediment dynamics in changing environments. — IAHS publication No 325, 2008. — P. 149–156.

31. Syvitski J. P. M., Vörösmarty C., Kettner A. J., et al. Impact of humans on the flux of terrestrial sediment to the global ocean // Science. — 2005. — Vol. 308, no. 5720. — P. 376–380. — https://doi.org/10.1126/science.1109454.

32. Trizno A. K., Glodenis M. N. and Makhaeva N. M. Novosibirsk reservoir, water management complex and it’s problems // Water Sector of Russia: Problems, Technologies, Management. — 2000. — Vol. 2, no. 5. — P. 423–430. — (In Russian).

33. Turutina T. V. Changes in the intensity of erosion processes in the riverbeds of the cryolithozone (on the example of the rivers of Central Yamal) // The thirty-seventh plenary interuniversity coordination meeting on the problem of erosion, riverbed and estuarine processes. — Ryazan : Ryazan State University named after S. A. Yesenin, 2022. — P. 157–158. — EDN: https://elibrary.ru/KQMXVT ; (in Russian).

34. Vörösmarty C., Meybeck M., Fekete B., et al. Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments // Global and Planetary Change. — 2003. — Vol. 39, no. 1/2. — P. 169–190. — https://doi.org/10.1016/S0921-8181(03)00023-7. EDN: https://elibrary.ru/MAZQDX

35. Walling D. E. The changing sediment loads of the world’s rivers // Annals of Warsaw University of Life Sciences - SGGW, Land Reclamation. — 2008. — No. 39. — P. 3–20. — https://doi.org/10.2478/v10060-008-0001-x. EDN: https://elibrary.ru/MRPDFH

36. Wegner C., Bennett K.E., Vernal A. de, et al. Sediments and future climate // Nature Geoscience. — 2009. — Vol. 2. DOI: https://doi.org/10.1038/ngeo491

37. World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals. — WMO-No. 1203, 2017. — 29 p.


Войти или Создать
* Забыли пароль?