Геофизический центр Российской Академии Наук (Лаборатория геоинформатики и геомагнитных исследований, старший научный сотрудник)
Россия
Институт физики Земли им. О. Ю. Шмидта РАН
Москва, Россия
УДК 550.37 Геоэлектричество. Земные токи
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The development and implementation of new correlation-statistical models for the operational assessment of technospheric risks arising from the impact of space weather on power electric systems operating within the boundaries of the auroral oval is currently an urgent research problem with a pronounced applied nature. Such models demonstrate the highest practical significance in polar subregions with a low density of coverage by reliable and credible sources of geomagnetic data (Taimyr Peninsula, Gydan Peninsula, northern regions of Yakutia, etc.), i.e., in fact, the overwhelming territory of the Arctic zone of the Russian Federation (AZRF). Thus, the paper is concerned with a new approach, which is proposed to the non-hardware assessment of the level of geoinduced currents (GIC) in the power electric systems of the AZRF, which is based on correlation-statistical modeling of the GIC level according to the observation of auroras as an accessible natural indicator of space weather state. Using the example of the Vykhodnoy substation of the Northern Transit main power grid, it is shown that when registering auroras in the north, at the zenith, and in the south, the probable (averaged over 30 min) GIC levels are ~0.08 A, ~0.23 A, and ~0.68 A, respectively. At the same time, the probability of exceeding the average half-hour GIC levels of 2 A (in the case of auroras in the north, at the zenith, and in the south) are ~6%, ~10%, and ~15%, respectively.
geoinduced currents, auroras, geomagnetic variations, space weather, high-latitude power electric systems, statistical models.
1. Barannik M. B., Danilin A. N., Kat’kalov Y. V., et al. A system for recording geomagnetically induced currents in neutrals of power autotransformers // Instruments and Experimental Techniques. — 2012. — Vol. 55, no. 1. — P. 110–115. — DOI:https://doi.org/10.1134/s0020441211060121. EDN: https://elibrary.ru/NQFSKL
2. Blake S. P., Gallagher P. T., Campanyà J., et al. A Detailed Model of the Irish High Voltage Power Network for Simulating GICs // Space Weather. — 2018. — Vol. 16, no. 11. — P. 1770–1783. — DOI:https://doi.org/10.1029/2018sw001926. EDN: https://elibrary.ru/JDLFUD
3. Danilov G. A. Improving the quality of operation of power transmission lines. — Moscow-Berlin : Direct-Media, 2015. — (In Russian).
4. Dobbins R. W., Schriiver K. Electrical Claims and Space Weather. Measuring the visible effects of an invisible force June 2015. — Zurich, Switzerland : Zurich Insurance Group Ltd., 2015.
5. Eroshenko E., Belov A., Boteler D., et al. Effects of strong geomagnetic storms on Northern railways in Russia // Advances in Space Research. — 2010. — Vol. 46, no. 9. — P. 1102–1110. — DOI:https://doi.org/10.1016/j.asr.2010.05.017. EDN: https://elibrary.ru/GKXZBR
6. Gvishiani A. D., Lukyanova R. Y. Assessment of the influence of geomagnetic disturbances on the trajectory of directional drilling of deep wells in the Arctic region // Fundamental basis of innovative technologies in the oil and gas industry : Proceedings of the All-Russian scientific conference dedicated to the 30th anniversary of the Institute of Oil and Gas Geophysics of the Russian Academy of Sciences. — Moscow : «Analitik», 2017. — P. 46. — (In Russian).
7. Kanonidi H. D., Oraevsky V. N., Belov A. V., et al. Failures in the operation of railway automation during geomagnetic storms // Problems of forecasting emergency situations : Collection of materials from a scientific and practical conference. — Moscow : FC VNII GOChS Emercom of Russia, 2002. — P. 41–42. — (In Russian).
8. Kataoka R., Ngwira C. Extreme geomagnetically induced currents // Progress in Earth and Planetary Science. — 2016. — Vol. 3, no. 1. — DOI:https://doi.org/10.1186/s40645-016-0101-x. EDN: https://elibrary.ru/FOPZHV
9. Marshall R. A., Smith E. A., Francis M. J., et al. A preliminary risk assessment of the Australian region power network to space weather // Space Weather. — 2011. — Vol. 9, no. 10. — DOI:https://doi.org/10.1029/2011sw000685.
10. PGI Geophysical data. January, February, March 2013 / ed. by V. Vorobev. — Murmansk, Apatity : PGI KSC RAS, 2013.
11. Pilipenko V. A., Chernikov A., Soloviev A., et al. Influence of Space Weather on the Reliability of the Transport System Functioning at High Latitudes // Russian Journal of Earth Sciences. — 2023. — DOI:https://doi.org/10.2205/2023es000824. EDN: https://elibrary.ru/OTRRKP
12. Pilipenko V. A. Space weather impact on ground-based technological systems // Solar-Terrestrial Physics. — 2021. — P. 72–110. — DOI:https://doi.org/10.12737/szf-73202106. EDN: https://elibrary.ru/EZKKMO
13. Ptitsyna N. G., Tyasto M. I., Kasinsky V. V., et al. Space weather effect on engineering systems: Failures in the railway telemetry during geomagnetic storms // Solnechno-Zemnaya Fizika. — 2008. — 12–2 (125). — P. 360. — (In Russian). EDN: https://elibrary.ru/KWRPTV
14. Pulyaev V. I., Usachev Y. V. Magnetic storm — the reason for the shutdown of the 330 kV power transmission line // Energetik. — 2002. — No. 7. — P. 18. — (In Russian).
15. Radasky W., Emin Z., Adams R. TB 780: Understanding of geomagnetic storm environment for high voltage power grids. — CIGRE, 2019.
16. Selivanov V. N., Aksenovich T. V., Bilin V. A., et al. Database of geomagnetically induced currents in the main transmission line “Northern Transit” // Solar-Terrestrial Physics. — 2023. — Vol. 9, no. 3. — P. 93–101. — DOI:https://doi.org/10.12737/stp93202311. DOI: https://doi.org/10.12737/stp-93202311; EDN: https://elibrary.ru/AFCZDS
17. Tanskanen E. I. A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined // Journal of Geophysical Research: Space Physics. — 2009. — Vol. 114, A5. — DOI:https://doi.org/10.1029/2008ja013682. EDN: https://elibrary.ru/WERBPW
18. Vorobev A. V., Vorobeva G. R. Evaluation of the Influence of Geomagnetic Activity on Metrological Characteristics of Inclinometric Information Measuring Systems // Measurement Techniques. — 2017. — Vol. 60, no. 6. — P. 546–551. — DOI:https://doi.org/10.1007/s11018-017-1232-1. EDN: https://elibrary.ru/XOFYUA
19. Vorobev A. V., Pilipenko V. A., Sakharov Y. A., et al. Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents // Solar-Terrestrial Physics. — 2019. — Vol. 5, no. 1. — P. 35–42. — DOI:https://doi.org/10.12737/stp-51201905. EDN: https://elibrary.ru/OMYAED
20. Vorobev A. V., Pilipenko V. A. Geomagnetic data recovery approach based on the concept of digital twins // Solar-Terrestrial Physics. — 2021. — Vol. 7, no. 2. — P. 48–56. — DOI:https://doi.org/10.12737/stp-72202105. EDN: https://elibrary.ru/NICJYV
21. Vorobev A. V., Soloviev A., Pilipenko V. A., Vorobeva G., Sakharov Y. A. An Approach to Diagnostics of Geomagnetically Induced Currents Based on Ground Magnetometers Data // Applied Sciences. — 2022. — Vol. 12, no. 3. — P. 1522. — DOI:https://doi.org/10.3390/app12031522.
22. Vorobev A. V., Soloviev A., Pilipenko V. A., Vorobeva G., Gainetdinova A., et al. Local diagnostics of aurora presence based on intelligent analysis of geomagnetic data // Solar-Terrestrial Physics. — 2023. — Vol. 9, no. 2. — P. 22–30. — DOI:https://doi.org/10.12737/stp-92202303. EDN: https://elibrary.ru/NDGWKO
23. Vorobev A., Lapin A., Vorobeva G. Software for Automated Recognition and Digitization of Archive Data of Aurora Optical Observations // Informatics and Automation. — 2023. — Vol. 22, no. 5. — P. 1177–1206. — DOI:https://doi.org/10.15622/ia.22.5.8. EDN: https://elibrary.ru/IBKNUF
24. Vorobev A. V., Lapin A. N., Soloviev A. A., et al. An Approach to Interpreting Space Weather Natural Indicators to Evaluate the Impact of Space Weather on High-Latitude Power Systems // Izvestiya, Physics of the Solid Earth. — 2024. — Vol. 60, no. 4. — P. 604–611. — DOI:https://doi.org/10.1134/s106935132470054x. EDN: https://elibrary.ru/CYEIKT
25. Yagodkina O. I., Vorobev V. G., Shekunova E. S. Observations of aurorae over the Kola peninsula // Transactions of the Kola Science Centre. Heliogeophysics. Series 5. — 2019. — No. 8. — P. 43–55. — DOI:https://doi.org/10.25702/KSC.2307-5252.2019.10.8. — (In Russian).
26. Yagova N. V., Rozenberg I. N., Gvishiani A. D., et al. Study of geomagnetic activity impact on functioning of railway automatics in Russian Arctic // Arctic: Ecology and Economy. — 2023. — Vol. 13, no. 3. — P. 341–352. — DOI:https://doi.org/10.25283/2223-4594-2023-3-341-352. — (In Russian). EDN: https://elibrary.ru/LOUQPF
27. Zeleny L. M., Petrukovich A. A. Arctic. Space weather // Priroda. — 2015. — No. 9. — P. 31–39. — (In Russian).




