Москва, г. Москва и Московская область, Россия
Институт земного магнетизма, ионосферы и распространения радиоволн им. А.В. Пушкова РАН
Калининград, Калининградская область, Россия
УДК 52-853 Ионосфера
УДК 550.388 Явления, обусловленные активностью ионосферы. Явления свечения неба и др.
УДК 550.385.4 Магнитные бури
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The presented work examines the extreme geomagnetic storm that occurred during May 10–12, 2024, following solar flares on May 8–9, 2024, hence named the Victory Day Storm. This event, marked as the most intense geomagnetic storm of the 21st century to date, caused significant disturbances not only in the auroral zone but also in the subauroral and mid-latitude ionosphere. Using data from satellites, ground-based ionosondes, Global Navigation Satellite System (GNSS) receivers, and all-sky cameras located in the Kaliningrad region, this research tracks how the coronal mass ejection from the Sun led to substantial changes in ionospheric plasma density, structure, and dynamics. Notably, auroras were observed in the subauroral and mid-latitudes, which is a rare phenomenon at these latitudes, providing valuable information on the ionospheric response to extreme geomagnetic activity. Swarm and DMSP satellite data identified polarization jet/SAID as U-shaped structures on ionograms, while Strong Thermal Emission Velocity Enhancements (STEVE) was observed by an all-sky camera along with increased Rate of Total Electron Content Index (ROTI). A diffuse aurora with a moving omega structure, as well as ray and corona auroral features, were observed, accompanied by a significant ROTI increase and enhanced scattering of the auroral Es layer on ionograms.
Extreme geomagnetic storm; Optical phenomenon, Satellite and ground-based means, Solar-Terrestrial Relations, Ionosphere, Auroras, STEVE, PJ/SAID
1. Anderson P. C., Heelis R. A. and Hanson W. B. The ionospheric signatures of rapid subauroral ion drifts // Journal of Geophysical Research: Space Physics. — 1991. — Vol. 96, A4. — P. 5785–5792. — https://doi.org/10.1029/90ja02651.
2. Bolduc L. GIC observations and studies in the Hydro-Québec power system // Journal of Atmospheric and Solar-Terrestrial Physics. — 2002. — Vol. 64, no. 16. — P. 1793–1802. — https://doi.org/10.1016/S1364-6826(02)00128-1. EDN: https://elibrary.ru/BBFQFB
3. Carmo C. S., Dai L., Wrasse C. M., et al. Ionospheric Response to the Extreme 2024 Mother’s Day Geomagnetic Storm Over the Latin American Sector // Space Weather. — 2024. — Vol. 22, no. 12. — e2024SW004054. — https://doi.org/10.1029/2024SW004054. EDN: https://elibrary.ru/QQIDBM
4. Carrington R. C. Description of a Singular Appearance seen in the Sun on September 1, 1859 // Monthly Notices of the Royal Astronomical Society. — 1859. — Vol. 20, no. 1. — P. 13–15. — https://doi.org/10.1093/mnras/20.1.13.
5. Chernyshov A. A., Klimenko M. V., Nosikov I. A., et al. Effects in the upper atmosphere and ionosphere in the subauroral region during Victory Day 2024 Geomagnetic Storm (May 10-12, 2024) // Advances in Space Research. — 2025. — https://doi.org/10.1016/j.asr.2025.02.015. EDN: https://elibrary.ru/XKWOMA
6. Cornwall J. M., Coroniti F. V. and Thorne R. M. Unified theory of SAR arc formation at the plasmapause // Journal of Geophysical Research. — 1971. — Vol. 76, no. 19. — P. 4428–4445. — https://doi.org/10.1029/JA076i019p04428.
7. Galperin Y. I., Ponomarev V. N. and Zosimova A. G. Direct measurements of drift velocity of ions in the upper ionosphere during a magnetic storm. I. Methodical questions and some results of measurements during a magnetically quiet period of time // Cosmic Research. — 1973. — Vol. 11. — P. 273–283. — (In Russian).
8. Gonzalez-Esparza J. A., Sanchez-Garcia E., Sergeeva M., et al. The Mother’s Day Geomagnetic Storm on 10 May 2024: Aurora Observations and Low Latitude Space Weather Effects in Mexico // Space Weather. — 2024. — Vol. 22, no. 11. — e2024SW004111. — https://doi.org/10.1029/2024sw004111. EDN: https://elibrary.ru/BCZLXN
9. Horvath I. and Lovell B. C. Traveling ionospheric disturbances and their relations to storm-enhanced density features and plasma density irregularities in the local evening and nighttime hours of the Halloween superstorms of 29-31 October 2003 // Journal of Geophysical Research: Space Physics. — 2010. — Vol. 115, A9. — A09327. — https: //doi.org/10.1029/2009JA015125. EDN: https://elibrary.ru/GESOAL
10. Karlsson T., Marklund G. T., Blomberg L. G., et al. Subauroral electric fields observed by the Freja satellite: A statistical study // Journal of Geophysical Research: Space Physics. — 1998. — Vol. 103, A3. — P. 4327–4341. — https://doi.org/10.1029/97JA00333.
11. Khalipov V. L., Stepanov A. E., Kotova G. A., et al. Vertical plasma drift velocities in the polarization jet observation by ground Doppler measurements and driftmeters on DMSP satellites // Geomagnetism and Aeronomy. — 2016. — Vol. 56, no. 5. — P. 535–544. — https://doi.org/10.1134/s0016793216050066. EDN: https://elibrary.ru/XFOMUF
12. Kotova D. S., Sinevich A. A., Chernyshov A. A., et al. Strong turbulent flow in the subauroral region in the Antarctic can deteriorate satellite-based navigation signals // Scientific Reports. — 2025. — Vol. 15, no. 1. — P. 3458. — https://doi.org/10.1038/s41598-025-86960-6. EDN: https://elibrary.ru/GXVBAC
13. MacDonald E. A., Donovan E., Nishimura Y., et al. New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere // Science Advances. — 2018. — Vol. 4, no. 3. — https://doi.org/10.1126/sciadv.aaq0030. EDN: https://elibrary.ru/YHYUSD
14. Parnikov S. G., Ievenko I. B. and Koltovskoi I. I. Subauroral Luminosity STEVE over Yakutia during a Substorm: Analysis of the Event of March 1, 2017 // Geomagnetism and Aeronomy. — 2022. — Vol. 62, no. 4. — P. 434–443. — https://doi.org/10.1134/S0016793222030136. EDN: https://elibrary.ru/SYUDCI
15. Pi X., Mannucci A. J., Lindqwister U. J., et al. Monitoring of global ionospheric irregularities using the Worldwide GPS Network // Geophysical Research Letters. — 1997. — Vol. 24, no. 18. — P. 2283–2286. — https://doi.org/10.1029/97gl02273.
16. Rich F. J. and Denig W. F. The major magnetic storm of March 13-14, 1989 and associated ionosphere effects // Canadian Journal of Physics. — 1992. — Vol. 70, no. 7. — P. 510–525. — https://doi.org/10.1139/p92-086.
17. Rodger A. S., Moffett R. J. and Quegan S. The role of ion drift in the formation of ionisation troughs in the mid- and high-latitude ionosphere-a review // Journal of Atmospheric and Terrestrial Physics. — 1992. — Vol. 54, no. 1. — P. 1–30. — https://doi.org/10.1016/0021-9169(92)90082-V.
18. Sato N., Yukimatu A. S., Tanaka Y., et al. Morphologies of omega band auroras // Earth, Planets and Space. — 2017. — Vol. 69, no. 1. — https://doi.org/10.1186/s40623-017-0688-1. EDN: https://elibrary.ru/VMHLDY
19. Sinevich A. A., Chernyshov A. A., Chugunin D. V., et al. Small-Scale Irregularities Within Polarization Jet/SAID During Geomagnetic Activity // Geophysical Research Letters. — 2022. — Vol. 49, no. 8. — e2021GL097107. — https://doi.org/10.1029/2021GL097107. EDN: https://elibrary.ru/IFGNJK
20. Sinevich A. A., Chernyshov A. A., Chugunin D. V., et al. Stratified Subauroral Ion Drift (SSAID) // Journal of Geophysical Research: Space Physics. — 2023. — Vol. 128, no. 3. — https://doi.org/10.1029/2022JA031109. EDN: https://elibrary.ru/QMVTAR
21. Sinevich A. A., Chernyshov A. A., Chugunin D. V., et al. Multi-Instrument Approach to Study Polarization Jet/SAID and STEVE // Journal of Geophysical Research: Space Physics. — 2024a. — Vol. 129, no. 11. — https://doi.org/10.1029/2024JA033222. EDN: https://elibrary.ru/HNRBWY
22. Sinevich A. A., Chernyshov A. A., Chugunin D. V., et al. The Polarization Jet/SAID and Plasma Irregularities of Different Scales // Bulletin of the Russian Academy of Sciences: Physics. — 2024b. — Vol. 88, no. 3. — P. 375–380. — https://doi.org/10.1134/S1062873823705548. EDN: https://elibrary.ru/JNHSMN
23. Spiro R. W., Heelis R. A. and Hanson W. B. Rapid subauroral ion drifts observed by Atmosphere Explorer C // Geophysical Research Letters. — 1979. — Vol. 6, no. 8. — P. 657–660. — https://doi.org/10.1029/gl006i008p00657.
24. Stepanov A. E., Kobyakova S. E. and Khalipov V. L. Fast subauroral drifts of ionospheric plasma according to data from Yakut meridional chain of stations // Solar-Terrestrial Physics. — 2019. — Vol. 5, no. 4. — P. 60–65. — https://doi.org/10.12737/stp-54201908. EDN: https://elibrary.ru/YJLTBC
25. Stone E. C., Frandsen A. M., Mewaldt R. A., et al. The Advanced Composition Explorer // Space Science Reviews. — 1998. — Vol. 86, no. 1–4. — P. 1–22. — https://doi.org/10.1023/A:1005082526237. DOI: https://doi.org/10.1007/978-94-011-4762-0_1; EDN: https://elibrary.ru/LSNHFF
26. Yasyukevich Yu. V., Vasiliev R. V., Rubtsov A. V., et al. Extreme Magnetic Storm of May 10-19, 2024: Coupling between Neutral and Charged Components of the Upper Atmosphere and the Effect on Radio Systems // Doklady Earth Sciences. — 2025. — Vol. 520, no. 2. — https://doi.org/10.1134/S1028334X24604978. EDN: https://elibrary.ru/QQRFYN




