St.Petersburg, г. Санкт-Петербург и Ленинградская область, Россия
УДК 551.46 Океанология (океанография). Рельеф морского дна
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
This study provides a multidisciplinary analysis of the fronts and frontal zones along a 6,000 km transect in the Southern Ocean. Observations were carried out aboard the research vessel “Akademik Tryoshnikov” from April 2 to 13, 2024 on the way from Cape Town to Mirny wintering station and cover the waters of the Atlantic and Indian sectors of the Southern Ocean. Using satellite altimetry and shipboard data, we mapped the Antarctic Circumpolar Current (ACC) and its multi-branch structure, including the Subantarctic Front (SAF), Polar Front (PF), and Southern ACC Front (SACCF). Observations revealed dynamic interactions within the ACC, with the convergence of the PF branches producing strong southeastward flows, reaching 53 cm/s at the surface levels and decreasing to 26 cm/s at a depth of 550 m. Alongside physical measurements, nutrient and phytoplankton distributions were analyzed, highlighting sharp gradients in silica, phosphorus, and chlorophyll-a concentrations across fronts. In nutrient-rich zones such as the Polar Front and south of the ACC, diverse and abundant phytoplankton communities were observed, particularly diatoms such as Fragilariopsis kerguelensis and Rhizosolenia simplex. These findings show how combined use of biochemical and hydrodynamic data can contribute to better understanding of the complex structure of the ACC and surrounding waters.
Southern Ocean, front, frontal zone, ACC, SADCP, altimetry data, nutrients, chlorophyll-a
1. Arar E. J. and Collins G. B. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence. — National Exposure Research Laboratory, Office of Research, Development, U.S. Environmental Protection Agency, 1997. — 22 p.
2. Artamonova K. V., Gangnus I. A., Dukhova L. A., et al. Spatial hydrochemical structure in surface waters of the Southern ocean between Africa and Antarctica // Arctic and Antarctic Research. — 2021. — Vol. 67, no. 4. — P. 328–347. — https://doi.org/10.30758/0555-2648-2021-67-4-328-347. — (In Russian).
3. Artana C., Lellouche J. M., Park Y. H., et al. Fronts of the Malvinas Current System: Surface and Subsurface Expressions Revealed by Satellite Altimetry, Argo Floats, and Mercator Operational Model Outputs // Journal of Geophysical Research: Oceans. — 2018. — Vol. 123, no. 8. — P. 5261–5285. — https://doi.org/10.1029/2018jc013887.
4. Arzhanova N. V. and Artamonova K. V. Hydrochemical Structure of Water Masses in Areas of the Antarctic Krill (Euphausia Superba Dana) Fisheries // Trudy VNIRO. — 2014. — Vol. 152. — P. 118–132. — EDN: https://elibrary.ru/TGTNWF ; (in Russian).
5. Barré N., Provost C., Renault A., et al. Fronts, meanders and eddies in Drake Passage during the ANT-XXIII/3 cruise in January-February 2006: A satellite perspective // Deep Sea Research Part II: Topical Studies in Oceanography. — 2011. — Vol. 58, no. 25/26. — P. 2533–2554. — https://doi.org/10.1016/j.dsr2.2011.01.003. EDN: https://elibrary.ru/PLWYCP
6. Batrak K. V. Hydrochemical characteristic of different modifications of Antarctic waters // Oceanology. — 2008. — Vol. 48, no. 3. — P. 349–356. — https://doi.org/10.1134/S0001437008030065. EDN: https://elibrary.ru/LKYSPB
7. Bogdanov M. A., Makarov R. R., Maslennikov V. V., et al. The structure of hydrophysical fields in the Atlantic sector of the Southern ocean and their impact on plankton communities. — Moscow : ONTI VNIRO, 1986. — 64 p.
8. Burkov V. A. Antarctic jets // Oceanology of the Russian Academy of Sciences. — 1994. — Vol. 34, no. 2. — P. 145–153.
9. Chambers D. P. Using kinetic energy measurements from altimetry to detect shifts in the positions of fronts in the Southern Ocean // Ocean Science. — 2018. — Vol. 14, no. 1. — P. 105–116. — https://doi.org/10.5194/os-14-105-2018. EDN: https://elibrary.ru/VDRLRA
10. Chapman C. and Sallée J. B. Isopycnal Mixing Suppression by the Antarctic Circumpolar Current and the Southern Ocean Meridional Overturning Circulation // Journal of Physical Oceanography. — 2017. — Vol. 47, no. 8. — P. 2023–2045. — https://doi.org/10.1175/jpo-d-16-0263.1.
11. Chapman C. C. Southern Ocean jets and how to find them: Improving and comparing common jet detection methods // Journal of Geophysical Research: Oceans. — 2014. — Vol. 119, no. 7. — P. 4318–4339. — https://doi.org/10.1002/2014JC009810. EDN: https://elibrary.ru/UUVUYT
12. Chapman C. C. New Perspectives on Frontal Variability in the Southern Ocean // Journal of Physical Oceanography. — 2017. — Vol. 47, no. 5. — P. 1151–1168. — https://doi.org/10.1175/JPO-D-16-0222.1. EDN: https://elibrary.ru/YFAPZK
13. Chapman C. C., Lea M. A., Meyer A., et al. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate // Nature Climate Change. — 2020. — Vol. 10, no. 3. — P. 209–219. — https://doi.org/10.1038/s41558-020-0705-4. EDN: https://elibrary.ru/XJDOMS
14. Chereskin T. K. and Harris C. L. Shipboard acoustic Doppler current profiling during the WOCE Indian Ocean expedition: I10. — Scripps Institution of Oceanography, University of California, San Diego, 1997. — 137 p.
15. d’Ovidio F., Monte S. De, Alvain S., et al. Fluid dynamical niches of phytoplankton types // Proceedings of the National Academy of Sciences. — 2010. — Vol. 107, no. 43. — P. 18366–18370. — https://doi.org/10.1073/pnas.1004620107.
16. Deacon G. E. R. Physical and biological zonation in the Southern Ocean // Deep Sea Research Part A. Oceanographic Research Papers. — 1982. — Vol. 29, no. 1. — P. 1–15. — https://doi.org/10.1016/0198-0149(82)90058-9.
17. Egbert G. D. and Erofeeva S. Y. Efficient Inverse Modeling of Barotropic Ocean Tides // Journal of Atmospheric and Oceanic Technology. — 2002. — Vol. 19, no. 2. — P. 183–204. — https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2.
18. European Union-Copernicus Marine Service. Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed (1993-Ongoing). — 2021. — https://doi.org/10.48670/MOI-00148.
19. Exail. Inertial Navigation System (INS) Hydrins. — URL: https://www.ixblue.com/store/hydrins-2/ (visited on 02/03/2025).
20. Fedulov P. P. and Shnar V. N. Frontal zone and water structure of the Weddell Circle // Researches of the Weddell Circle. Oceanographic conditions and features of the plankton communities development. Digest of scientific papers. — Moscow : VNIRO, 1990. — P. 31–48. — (In Russian).
21. Ferrari R., Artana C., Saraceno M., et al. Satellite Altimetry and Current-Meter Velocities in the Malvinas Current at 41◦S: Comparisons and Modes of Variations // Journal of Geophysical Research: Oceans. — 2017. — Vol. 122, no. 12. — P. 9572–9590. — https://doi.org/10.1002/2017jc013340.
22. Franck V. M., Brzezinski M. A., Coale K. H., et al. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean // Deep Sea Research Part II: Topical Studies in Oceanography. — 2000. — Vol. 47, no. 15/16. — P. 3315–3338. — https://doi.org/10.1016/s0967-0645(00)00070-9. EDN: https://elibrary.ru/YEQAND
23. Frey D., Krechik V., Gordey A., et al. Austral summer circulation in the Bransfield Strait based on SADCP measurements and satellite altimetry // Frontiers in Marine Science. — 2023. — Vol. 10. — https://doi.org/10.3389/fmars.2023.1111541. EDN: https://elibrary.ru/AWQXSX
24. Frey D. I. and Kubryakov A. A. Dynamic Structure of Eddies of the Brazil-Malvinas Confluence Zone Revealed by Direct Measurements and Satellite Altimetry // Journal of Geophysical Research: Oceans. — 2023. — Vol. 128, no. 11. — https://doi.org/10.1029/2023jc019957. EDN: https://elibrary.ru/TNFXIJ
25. Frey D. I., Piola A. R., Krechik V. A., et al. Direct Measurements of the Malvinas Current Velocity Structure // Journal of Geophysical Research: Oceans. — 2021. — Vol. 126, no. 4. — https://doi.org/10.1029/2020jc016727. EDN: https://elibrary.ru/VCWYXP
26. Garabato A. C. Naveira, Ferrari R. and Polzin K. L. Eddy stirring in the Southern Ocean // Journal of Geophysical Research. — 2011. — Vol. 116, no. C9. — https://doi.org/10.1029/2010jc006818.
27. GEBCO Bathymetric Compilation Group 2022. The GEBCO_2022 Grid – a continuous terrain model of the global oceans and land. — 2022. — https://doi.org/10.5285/E0F0BB80-AB44-2739-E053-6C86ABC0289C.
28. Gille S. T., McKee D. C. and Martinson D. G. Temporal changes in the Antarctic circumpolar current: Implications for the Antarctic continental shelves // Oceanography. Special Issue on Ocean-Ice Interaction. — 2016. — Vol. 29, no. 4. — P. 96–105. DOI: https://doi.org/10.5670/oceanog.2016.102
29. Graham R. M., Boer A. M. de, Heywood K. J., et al. Southern Ocean fronts: Controlled by wind or topography? // Journal of Geophysical Research: Oceans. — 2012. — Vol. 117, no. C8. — https://doi.org/10.1029/2012jc007887. EDN: https://elibrary.ru/WBIPYD
30. Guide for Chemical Analysis of Marine and Fresh Waters during Ecological Monitoring of Fishery Reservoirs and Regions of the World Ocean, Prospective for Commercial Fishery / ed. by V. V. Sapozhnikov. — Moscow : VNIRO, 2003. — (In Russian).
31. Intergovernmental Oceanographic Commission. Chemical methods for use in marine environmental monitoring. — UNESCO, 1983. — 53 p.
32. Karlson B., Cusack C. and Bresnan E. Microscopic and molecular methods for quantitative phytoplankton analysis. — Unesco, 2010. — 110 p. — https://doi.org/10.25607/OBP-1371.
33. Langlais C., Rintoul S. and Schiller A. Variability and mesoscale activity of the Southern Ocean fronts: Identification of a circumpolar coordinate system // Ocean Modelling. — 2011. — Vol. 39, no. 1/2. — P. 79–96. — https://doi.org/10.1016/j.ocemod.2011.04.010. EDN: https://elibrary.ru/OKNWUF
34. Lévy M., Franks P. J. and Smith K. S. The role of submesoscale currents in structuring marine ecosystems // Nature Communications. — 2018. — Vol. 9, no. 1. — P. 4758. — https://doi.org/10.1038/s41467-018-07059-3. EDN: https://elibrary.ru/TVZEND
35. Maslennikov V. V. Climate fluctuations and the Antarctic marine ecosystem: doctoral dissertation. — Moscow : VNIRO, 2004. — EDN: https://elibrary.ru/NNIJRJ ; (in Russian).
36. Maslennikov V. V. and Popkov V. V. Position of the interaction zone of Antarctic waters of various modifications as an indicator of the northern boundary of the mass drift of Antarctic krill // Antarctica: Reports of the Interdepartmental Commission for the Study of Antarctica. Vol. 27. Vol. 27. — Moscow : Nauka, 1988. — P. 134–142. — (In Russian).
37. Morozov E. G., Frey D. I., Krechik V. A., et al. Multidisciplinary Observations across an Eddy Dipole in the Interaction Zone between Subtropical and Subantarctic Waters in the Southwest Atlantic // Water. — 2022. — Vol. 14, no. 17. — P. 2701. — https://doi.org/10.3390/w14172701. EDN: https://elibrary.ru/WCEIEP
38. Murphy J. and Riley A. J. A Single-Solution Method for the Determination of Soluble Phosphate in Sea Water // Journal of the Marine Biological Association of the United Kingdom. — 1958. — Vol. 37, no. 1. — P. 9–14. — https://doi.org/10.1017/s0025315400014776.
39. Orsi A. H., III T. Whitworth and Jr W. D. Nowlin. On the meridional extent and fronts of the Antarctic Circumpolar Current // Deep Sea Research Part I: Oceanographic Research Papers. — 1995. — Vol. 42, no. 5. — P. 641–673. — https://doi.org/10.1016/0967-0637(95)00021-w. EDN: https://elibrary.ru/APZCAR
40. Palter J. B., Marinov I., Sarmiento J. L., et al. Large-Scale, Persistent Nutrient Fronts of the World Ocean: Impacts on Biogeochemistry // Chemical Oceanography of Frontal Zones. — Springer Berlin Heidelberg, 2013. — P. 25–62. — https://doi.org/10.1007/698_2013_241.
41. Pujol M. I., Faugére Y., Taburet G., et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years // Ocean Science. — 2016. — Vol. 12, no. 5. — P. 1067–1090. — https://doi.org/10.5194/os-12-1067-2016.
42. Rintoul S. R., Hughes C. W. and Olbers D. Chapter 4.6 The Antarctic circumpolar current system // Ocean Circulation and Climate - Observing and Modelling the Global Ocean. Vol. 77. — Elsevier, 2001. — P. 271–XXXVI. — https://doi.org/10.1016/s0074-6142(01)80124-8.
43. Sokolov S. and Rintoul S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean // Journal of Geophysical Research: Oceans. — 2007. — Vol. 112, no. C7. — https://doi.org/10.1029/2006jc004072. EDN: https://elibrary.ru/WQAALB
44. Sokolov S. and Rintoul S. R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths // Journal of Geophysical Research: Oceans. — 2009a. — Vol. 114, no. C11. — https://doi.org/10.1029/2008jc005108. EDN: https://elibrary.ru/ULGMSP
45. Sokolov S. and Rintoul S. R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height // Journal of Geophysical Research: Oceans. — 2009b. — Vol. 114, no. C11. — P. 1–15. — https://doi.org/10.1029/2008JC005248. EDN: https://elibrary.ru/YHBQUK
46. Stukel M. R., Aluwihare L. I., Barbeau K. A., et al. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction // Proceedings of the National Academy of Sciences. — 2017. — Vol. 114, no. 6. — P. 1252– 1257. — https://doi.org/10.1073/pnas.1609435114. EDN: https://elibrary.ru/YXPKZR
47. Sun J. and Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton // Journal of Plankton Research. — 2003. — Vol. 25, no. 11. — P. 1331–1346. — https://doi.org/10.1093/plankt/fbg096. EDN: https://elibrary.ru/IYRPNR
48. Tarakanov R. Y. and Gritsenko A. M. Fine-jet structure of the Antarctic Circumpolar Current south of Africa // Oceanology. — 2014. — Vol. 54, no. 6. — P. 677–687. — https://doi.org/10.1134/s0001437014050130. EDN: https://elibrary.ru/UEZMYJ
49. Thompson A. F., Haynes P. H., Wilson C., et al. Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM // Geophysical Research Letters. — 2010. — Vol. 37, no. 23. — https://doi.org/10.1029/2010GL045386.
50. Thompson A. F. and Sallée J. B. Jets and Topography: Jet Transitions and the Impact on Transport in the Antarctic Circumpolar Current // Journal of Physical Oceanography. — 2012. — Vol. 42, no. 6. — P. 956–972. — https://doi.org/10.1175/jpo-d-11-0135.1. EDN: https://elibrary.ru/RRMGCP
51. Williams R. G., Wilson C. and Hughes C. W. Ocean and Atmosphere Storm Tracks: The Role of Eddy Vorticity Forcing // Journal of Physical Oceanography. — 2007. — Vol. 37, no. 9. — P. 2267–2289. — https://doi.org/10.1175/jpo3120.1.



