Москва, г. Москва и Московская область, Россия
УДК 9 География. Биография. История
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
We analyze measurements of temperature on moorings in the Fram Strait. Locations of moorings differ by the slope of the bottom topography and efficient vorticity induced by mean currents in the strait. Forcing by tidal currents also differs in different regions of the strait. High negative (anticyclonic) vorticity occasionally allows existence of internal tides of the M2 frequency north of the critical latitude (74°30’ N) for these waves.
moorings, Fram Strait, internal tides, critical latitudes, vorticity
1. Baines P. G. On internal tide generation models // Deep Sea Research Part A. Oceanographic Research Papers. — 1982. — Vol. 29, no. 3. — P. 307–338. — https://doi.org/10.1016/0198-0149(82)90098-x.
2. Beszczynska-Möller A., Fahrbach E., Schauer U., et al. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010 // ICES Journal of Marine Science. — 2012. — Vol. 69, no. 5. — P. 852–863. — https://doi.org/10.1093/icesjms/fss056. EDN: https://elibrary.ru/RITEWT
3. Egbert G. D. and Erofeeva S. Efficient Inverse Modeling of Barotropic Ocean Tides // Journal of Atmospheric and Oceanic Technology. — 2002. — Vol. 19, no. 2. — P. 183–204. — https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.co;2.
4. European Union-Copernicus Marine Service, Global Ocean Mean Dynamic Topography. — Mercator Ocean International, 2020. — https://doi.org/10.48670/MOI-00150. — (Accessed on 23-02-2025).
5. Fahrbach E., Meincke J., Østerhus S., et al. Direct measurements of volume transports through Fram Strait // Polar Research. — 2001. — Vol. 20, no. 2. — P. 217–224. — https://doi.org/10.1111/j.1751-8369.2001.tb00059.x.
6. Fahrbach E., Rohardt G. and Schauer U. Physical oceanography and current meter data from mooring F13-3. — 2012a. — https://doi.org/10.1594/PANGAEA.800306.
7. Fahrbach E., Rohardt G. and Schauer U. Physical oceanography and current meter data from mooring F2-2. — 2012b. — https://doi.org/10.1594/PANGAEA.800330.
8. Fahrbach E., Rohardt G. and Schauer U. Physical oceanography and current meter data from mooring F9-1. — 2012c. — https://doi.org/10.1594/PANGAEA.800408.
9. Fer I., Koenig Z., Kozlov I. E., et al. Tidally Forced Lee Waves Drive Turbulent Mixing Along the Arctic Ocean Margins // Geophysical Research Letters. — 2020. — Vol. 47, no. 16. — https://doi.org/10.1029/2020GL088083. EDN: https://elibrary.ru/UAAIHY
10. Garrett C. and Kunze E. Internal tide generation in the deep ocean // Annual Review of Fluid Mechanics. — 2007. — Vol. 39, no. 1. — P. 57–87. — https://doi.org/10.1146/annurev.fluid.39.050905.110227. EDN: https://elibrary.ru/LQZRMN
11. Garrett C. and Munk W. Space-Time scales of internal waves // Geophysical Fluid Dynamics. — 1972. — Vol. 3, no. 3. — P. 225–264. — https://doi.org/10.1080/03091927208236082.
12. Holloway P. E. and Merrifield M. Internal tide generation by seamounts, ridges, and islands // Journal of Geophysical Research: Oceans. — 1999. — Vol. 104, no. C11. — P. 25937–25951. — https://doi.org/10.1029/1999jc900207.
13. Khimchenko E. E., Frey D. I. and Morozov E. G. Tidal internal waves in the Bransfield Strait, Antarctica // Russian Journal of Earth Sciences. — 2020. — Vol. 20, no. 2. — ES2006. — https://doi.org/10.2205/2020es000711. EDN: https://elibrary.ru/YQNVRW
14. Konyaev K. V., Plueddemann A. and Sabinin K. D. Internal tide on the Yermak Plateau in the Arctic Ocean // Izvestiya, Atmospheric and Oceanic Physics. — 2000. — Vol. 36, no. 4. — P. 500–509. EDN: https://elibrary.ru/LFVWUP
15. Konyaev K. V. and Sabinin K. D. Waves in the Ocean. — Leningrad : Gidrometeoizdat, 1992. — 272 p. — (In Russian).
16. Kozlov I. E., Kopyshov I. O., Frey D. I., et al. Multi-Sensor Observations Reveal Large-Amplitude Nonlinear Internal Waves in the Kara Gates, Arctic Ocean // Remote Sensing. — 2023. — Vol. 15, no. 24. — https://doi.org/10.3390/rs15245769. EDN: https://elibrary.ru/LBAVOR
17. Kozlov I. E., Mihailichenko T. V. and Petrenko L. A. Properties of Short-Period Internal Waves Near Svalbard from Sentinel-1 Satellite Data // Russian Journal of Earth Sciences. — 2024. — Vol. 24. — ES5008. — https://doi.org/10.2205/2024es000951. EDN: https://elibrary.ru/RPKMQQ
18. Kozlov I. E., Plotnikov E. V. and Manucharyan G. E. Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations // The Cryosphere. — 2020. — Vol. 14, no. 9. — P. 2941–2947. — https://doi.org/10.5194/tc-14-2941-2020. EDN: https://elibrary.ru/DBAYUU
19. Kozubskaya G. I., Konyaev K. V., Plueddemann A., et al. Internal waves at the slope of Bear Island from the data of the Barents Sea Polar Front Experiment (BSPF-92) // Oceanology. — 1999. — Vol. 39, no. 2. — P. 147–154. EDN: https://elibrary.ru/LFEYFP
20. Krauß W. Interne Wellen (Methoden und Ergebnisse der Theoretischen Ozeanographie: Band II). — Berlin-Nikolasee : Gebrüder Borntraeger, 1966. — 248 p.
21. Kurkina O. E. and Talipova T. G. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea) // Natural Hazards and Earth System Sciences. — 2011. — Vol. 11, no. 3. — P. 981–986. — https://doi.org/10.5194/nhess-11-981-2011. EDN: https://elibrary.ru/OHTZZJ
22. LeBlond P. H. and Mysak L. A. Waves in the Ocean. — Amsterdam : Elsevier, 1978. — P. 602.
23. Levine M. D., Paulson C. A. and Morison J. H. Internal Waves in the Arctic Ocean: Comparison with Lower-Latitude Observations // Journal of Physical Oceanography. — 1985. — Vol. 15, no. 6. — P. 800–809. — https://doi.org/10.1175/1520-0485(1985)015<0800:iwitao>2.0.co;2.
24. Lozovatsky I. D., Morozov E. G. and Fernando H. J. S. Spatial decay of energy density of tidal internal waves // Journal of Geophysical Research: Oceans. — 2003. — Vol. 108, no. C6. — P. 3201–3216. — https://doi.org/10.1029/2001jc001169. EDN: https://elibrary.ru/OQDXME
25. Marchenko A. V. and Morozov E. G. Surface manifestations of the waves in the ocean covered with ice // Russian Journal of Earth Sciences. — 2016. — Vol. 16, no. 1. — ES1001. — https://doi.org/10.2205/2016es000561. EDN: https://elibrary.ru/WJZMDX
26. Morozov E. G. Semidiurnal internal wave global field // Deep Sea Research Part I: Oceanographic Research Papers. — 1995. — Vol. 42, no. 1. — P. 135–148. — https://doi.org/10.1016/0967-0637(95)92886-c. EDN: https://elibrary.ru/APXYRZ
27. Morozov E. G. Wave Processes in the Arctic // Processes in GeoMedia-Volume VI. Vol. 6. — Springer International Publishing, 2023. — P. 175–203. — https://doi.org/10.1007/978-3-031-16575-7_18. EDN: https://elibrary.ru/QTEUQY
28. Morozov E. G., Ansorge I. and Vinokurov D. V. Semidiurnal internal tide in the Atlantic Ocean // Russian Journal of Earth Sciences. — 2020. — Vol. 20, no. 4. — ES4005. — https://doi.org/10.2205/2020es000733. EDN: https://elibrary.ru/BIJRNC
29. Morozov E. G. and Frey D. I. Strait of Kara Gates: A Region of Strong Internal Tides in the Arctic Seas // Russian Journal of Earth Sciences. — 2023. — Vol. 23. — ES3005. — https://doi.org/10.2205/2023es000860. EDN: https://elibrary.ru/NFMFHB
30. Morozov E. G. and Paka V. T. Internal waves in a high-latitude region // Oceanology. — 2010. — Vol. 50, no. 5. — P. 668–674. — https://doi.org/10.1134/S0001437010050048. EDN: https://elibrary.ru/OHMGGJ
31. Morozov E. G., Paka V. T. and Bakhanov V. V. Strong internal tides in the Kara Gates Strait // Geophysical Research Letters. — 2008. — Vol. 35, no. 16. — https://doi.org/10.1029/2008gl033804. EDN: https://elibrary.ru/LLMFGT
32. Morozov E. G. and Pisarev S. V. Internal tides at the Arctic latitudes (numerical experiments) // Oceanology. — 2002. — Vol. 42, no. 2. — P. 153–161. EDN: https://elibrary.ru/LHIVVL
33. Morozov E. G. and Pisarev S. V. Internal Waves in the Region of the Akselsundet Strait of Western Spitsbergen Island // Izvestiya, Atmospheric and Oceanic Physics. — 2023. — Vol. 59, no. 4. — P. 432–442. — https://doi.org/10.1134/s0001433823040126. EDN: https://elibrary.ru/KTVWKG
34. Parsons A. R., Bourke R. H., Muench R. D., et al. The Barents Sea Polar Front in summer // Journal of Geophysical Research: Oceans. — 1996. — Vol. 101, no. C6. — P. 14201–14221. DOI: https://doi.org/10.1029/96JC00119
35. Pisarev S. V. Experimental frequency spectra of internal waves in an ice-covered high-latitude basin // Oceanology. — 1988. — Vol. 28, no. 5. — P. 577–580.
36. Pisarev S. V. Some measurements of the spatial and temporal characteristics of internal waves in an ice-covered highlatitude basin // Oceanology. — 1991. — Vol. 31, no. 1. — P. 42–46.
37. Pisarev S. V. Spatial and temporal characteristics of internal waves at the edge of the continental shelf in the Arctic basin // Oceanology. — 1992. — Vol. 32, no. 5. — P. 579–583.
38. Plueddemannn A. J., Krishfield R., Takizawa T., et al. Upper-ocean velocities in the Beaufort Gyre // Geophysical Research Letters. — 1998. — Vol. 25, no. 2. — P. 183–186. — https://doi.org/10.1029/97gl53638.
39. Prinsenberg S. J., Wilmot W. L. and Rattray M. Generation and dissipation of coastal internal tides // Deep Sea Research and Oceanographic Abstracts. — 1974. — Vol. 21, no. 4. — P. 263–281. — https://doi.org/10.1016/0011-7471(74)90098-9.
40. Tareev B. A. On the dynamics of internal gravity waves in a constantly stratified ocean // Izv. Akad. Nauk, Fiz. Atmos. Okeana. — 1966. — Vol. 2, no. 10. — P. 1064–1075. — (In Russian).
41. Torgrimson G. M. and Hickey B. M. Barotropic and Baroclinic Tides over the Continental Slope and Shelf off Oregon // Journal of Physical Oceanography. — 1979. — Vol. 9, no. 5. — P. 945–961. — https://doi.org/10.1175/1520-0485(1979)009<0945:babtot>2.0.co;2.
42. Vlasenko V., Stashchuk N., Hutter K., et al. Nonlinear internal waves forced by tides near the critical latitude // Deep Sea Research Part I: Oceanographic Research Papers. — 2003. — Vol. 50, no. 3. — P. 317–338. — https://doi.org/10.1016/s0967-0637(03)00018-9. EDN: https://elibrary.ru/LIERVN
43. Vlasenko V. I. Non-linear model for the generation of baroclinic tides over extensive inhomogeneities of the seabed relief // Soviet Journal of Physical Oceanography. — 1992. — Vol. 3, no. 6. — P. 417–424. — https://doi.org/10.1007/bf02197556.



