employee
Moscow, Russian Federation
NUST MISiS (College of Mining, lecturer)
Moscow, Russian Federation
UDC 551.242
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.31
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
The findings derived from mathematical modeling of the stress-strain state in the epicentral zones of significant continental earthquakes with 𝑀 > 6 present new avenues for determining the earthquake’s initiation point, predicting its intensity, and providing preliminary assessments of the shaking characteristics of “medium” soils typically found at construction sites. Utilizing the example of the substantial earthquake that occurred in Iran (specifically in the Bam region) on December 26, 2003, with a 𝑀𝑤 6.6, this study outlines the results of a retrospective analysis aimed at forecasting the potential location and extent of the rupture within the earthquake’s focus, as well as calculating the static seismic moment 𝑀0. The stress release associated with these events facilitates the dissipation of accumulated tectonic stresses during the subsequent aftershock sequences. Furthermore, a temporal function of the seismic moment rate 𝑀0(𝑡) has been derived based on a model reflecting the stress-strain state of the rupture. The results presented herein enable the construction of a predictive isoseismal map during the retrospective forecasting phase, along with the generation of synthetic seismograms and accelerograms for strong crustal earthquakes.
Crustal earthquakes, modeling, fault, stress-strain state, seismic hazard, seismic moment
1. Gvishiani A. D., Fomenko N. A. and Dzeboev B. A. Fuzzy Sets and Big Data in the Three-Dimensional Interpretation of Seismic Zoning // Vestnik Rossijskoj akademii nauk. — 2024. — Vol. 94, no. 8. — P. 704–711. — https://doi.org/10.31857/s0869587324080026. — (In Russian).
2. Goldin S. V. Dilatancy, Repacking, and Earthquakes // Izvestiya, Physics of the Solid Earth. — 2004. — Vol. 40, no. 10. — P. 817–832.
3. Dinnik A. N. Stability of Arches. — Moscow : GOSTEKHIZDAT, 1946. — 128 p. — (In Russian).
4. Zabrodin V. Yu., Rybas O. V. and Gil’manova G. Z. Fault Tectonics of the Russian Far East Mainland. — Vladivostok : Dalnauka, 2015. — 132 p. — (In Russian).
5. Zavyalov A. D. and Zotov O. D. A New Way to Determine the Characteristic Size of the Source Zone // Journal of Volcanology and Seismology. — 2021. — Vol. 15, no. 1. — P. 19–25. — https://doi.org/10.1134/s0742046321010139.
6. Zavyalov A. D., Morozov A. N., Aleshin I. M., et al. Medium-term earthquake forecast method "Map of expected earthquakes" (MEE): Results and prospects // Geophysical Processes and Biosphere. — 2022. — Vol. 21, no. 2. — P. 114–131. — https://doi.org/10.21455/gpb2022.2-6. — (In Russian).
7. Kocharyan G. G. Geomechanics of Faults. — Moscow : GEOS, 2016. — 424 p. — (In Russian).
8. Morozov V. N. and Manevich A. I. Modeling stress-strain state in the epicentral zone of the earthquake 13.03.1992, MS =6.8 (Turkey) // Geophysical research. — 2018. — Vol. 19, no. 1. — P. 17–29. — https://doi.org/10.21455/gr2018.1-2. — (In Russian).
9. Morozov V. N., Tatarinov V. N., Kolesnikov I. Yu., et al. Modeling the stress-strain state in the epicentral zone of a strong earthquake in Iran (December 26, 2003, MW = 6.6) // Izvestiya, Physics of the Solid Earth. — 2018. — Vol. 54, no. 4. — P. 602–611. — https://doi.org/10.1134/S1069351318040080.
10. Morozov V. N., Tatarinov V. N., Kolesnikov I. Yu., et al. Mathematical Modeling of the Stress-Strain State of Episentral Zones of Strong Crustal Earthquakes. — Moscow : RAN, Nauka, 2024. — 244 p. — (In Russian).
11. Myachkin V. I., Kostrov B. V., Sobolev G. A., et al. Laboratory and Theoretical Studies of Earthquake Preparation // Izvestiya, Academy of Sciences, USSR, Physics of the Solid Earth. — 1974. — No. 10. — P. 107–112. — (In Russian).
12. Myachkin V. I., Kostrov B. V., Sobolev G. A., et al. Fundamentals of Source Physics and Earthquake Precursors // Physics of the Earthquake Source. — Moscow : Nauka, 1975. — P. 6–29. — (In Russian).
13. New Catalog of Strong Earthquakes in the USSR from Ancient Times to 1975 / ed. by N. V. Kondorskaya and N. V. Shebalin. — Moscow : Nauka, 1977. — 536 p. — (In Russian).
14. Riznichenko Yu. V. Dimensions of the Crustal Earthquake Source and Seismic Moment // Studies in Earthquake Physics. — Moscow : Nauka, 1976. — P. 9–27. — (In Russian).
15. Sobolev G. A. Seismic Noise. — Moscow : Nauka i Obrazovanie, 2014. — 271 p. — (In Russian).
16. Sobolev G. A. Avalanche Unstable Fracturing Formation Model // Izvestiya, Physics of the Solid Earth. — 2019. — Vol. 55, no. 1. — P. 138–151. — https://doi.org/10.1134/s1069351319010117.
17. Sobolev G. A. and Ponomarev A. V. Dynamics of fluid-triggered fracturing in the models of a geological medium // Izvestiya, Physics of the Solid Earth. — 2011. — Vol. 47, no. 10. — P. 902–918. — https://doi.org/10.1134/s1069351311100119.
18. Khachiyan E. E. and Levonyan L. A. Method of predicting synthetic seismograms and accelerograms of various soil bases in strong earthquakes // Earthquake engineering. Constructions safety. — 2018. — No. 2. — P. 14–25. — (In Russian).
19. Khachiyan E. E. Prediction of synthetic seismograms and accelerograms of strong movements of the soil at the earthquake model as an instant rip of the Earth’s crust // Bulletin of Science and Research Center of Construction. — 2019. — 23(4). — P. 5–34. — (In Russian).
20. Shebalin P. N., Tikhotsky S. A. and Kovalenko A. A. On improving approaches to reducing earthquake damage // Vestnik Rossijskoj akademii nauk. — 2024. — Vol. 94, no. 10. — P. 900–909. — https://doi.org/10.31857/s0869587324100046. — (In Russian).
21. Sherman S. I., Bornyakov S. A. and Buddo V. Yu. Regions of Dynamic Influence of Faults (Modeling Results). — Novosibirsk : Nauka. Siberian Branch, 1983. — 110 p. — (In Russian).
22. Allamehzadeh M., Dezvareh M., Farahbod A. M., et al. Seismological Aspects of the 2003 Bam, Iran, Earthquake and Its Aftershock Analysis // Earthquake Spectra. — 2005. — Vol. 21, 1_suppl. — P. 101–112. — https://doi.org/10.1193/1.2098167.
23. Anderson D. L. and Witcomb J. H. The Dilatancy-diffusion model of earthquake prediction // Proceeding of the conference on tectonic problems of the San Andreas fault systems. — Stanford University Press, 1973.
24. Funning G. J., Parsons B., Wright T. J., et al. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery // Journal of Geophysical Research: Solid Earth. — 2005. — Vol. 110, B9. — https://doi.org/10.1029/2004jb003338.
25. Grosser H., Baumbach M., Berckhemer H., et al. The Erzincan (Turkey) Earthquake (M s 6.8) of March 13, 1992 and its Aftershock Sequence // Pure and Applied Geophysics. — 1998. — Vol. 152, no. 3. — P. 465–505. — https://doi.org/10.1007/s000240050163.
26. Heidbach O., Rajabi M., Cui X., et al. The World Stress Map database release 2016: Crustal stress pattern across scales // Tectonophysics. — 2018. — Vol. 744. — P. 484–498. — https://doi.org/10.1016/j.tecto.2018.07.007.
27. Kanamori H. The energy release in great earthquakes // Journal of Geophysical Research. — 1977. — Vol. 82, no. 20. — P. 2981–2987. — https://doi.org/10.1029/jb082i020p02981.
28. Kanamori H. and Anderson L. Theoretical basis of some empirical relations in seismology // Bulletin of the Seismological Society of America. — 1975. — Vol. 65(5). — P. 1073–1095. — https://doi.org/10.1785/BSSA0650051073.
29. Kanamori H. and Brodsky E. E. The physics of earthquakes // Reports on Progress in Physics. — 2004. — Vol. 67, no. 8. — P. 1429–1496. — https://doi.org/10.1088/0034-4885/67/8/r03.
30. Lukk A. A., Yunga S. L., Shevchenko V. I., et al. Earthquake focal mechanisms, deformation state, and seismotectonics of the Pamir-Tien Shan region, Central Asia // Journal of Geophysical Research: Solid Earth. — 1995. — Vol. 100, B10. — P. 20321–20343. — https://doi.org/10.1029/95jb02158.
31. Morozov V. N. and Manevich A. I. Seismotectonic Model of the Focal Zone of the November 25, 2016, Aketao Earthquake MW 6.6 (China) // Doklady Earth Sciences. — 2024. — Vol. 519, no. 2. — P. 2243–2251. — https://doi.org/10.1134/s1028334x24603675.
32. Ramazi H. and Jigheh H. S. The Bam (Iran) Earthquake of December 26, 2003: From an engineering and seismological point of view // Journal of Asian Earth Sciences. — 2006. — Vol. 27, no. 5. — P. 576–584. — https://doi.org/10.1016/j.jseaes.2005.05.009.
33. Talebian M., Fielding E. J., Funning G. J., et al. The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault // Geophysical Research Letters. — 2004. — Vol. 31, no. 11. — https://doi.org/10.1029/2004gl020058.
34. Tatar M., Hatzfeld D., Moradi A. S., et al. The 2003 December 26 Bam earthquake (Iran),Mw6.6, aftershock sequence // Geophysical Journal International. — 2005. — Oct. — Vol. 163, no. 1. — P. 90–105. — https://doi.org/10.1111/j.1365-246x.2005.02639.x.
35. Tibaldi A., Tsereteli N., Varazanashvili O., et al. Active stress field and fault kinematics of the Greater Caucasus // Journal of Asian Earth Sciences. — 2020. — Vol. 188. — P. 104108. — https://doi.org/10.1016/j.jseaes.2019.104108.
36. Wells D. L. and Coppersmith K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bulletin of the Seismological Society of America. — 1994. — Vol. 84, no. 4. — P. 974–1002. — https://doi.org/10.1785/bssa0840040974.



