с 01.01.1972 по 01.01.2024
Севастополь, Россия
УДК 532.5 Движение жидкостей. Гидродинамика
УДК 55 Геология. Геологические и геофизические науки
УДК 550.34 Сейсмология
УДК 550.383 Главное магнитное поле Земли
ГРНТИ 37.01 Общие вопросы геофизики
ГРНТИ 37.15 Геомагнетизм и высокие слои атмосферы
ГРНТИ 37.25 Океанология
ГРНТИ 37.31 Физика Земли
ГРНТИ 38.01 Общие вопросы геологии
ГРНТИ 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
ГРНТИ 37.00 ГЕОФИЗИКА
ГРНТИ 38.00 ГЕОЛОГИЯ
ГРНТИ 39.00 ГЕОГРАФИЯ
ГРНТИ 52.00 ГОРНОЕ ДЕЛО
ОКСО 05.00.00 Науки о Земле
ББК 26 Науки о Земле
ТБК 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Sea surface waves create pressure waves of the infrasound range that do not fade with depth, which have a noticeable effect on the processes occurring in the earth's crust. The connection between the energy of surface waves and microseisms makes it possible to solve the inverse problem and reconstruct wave characteristics based on seismic measurement data. These studies require information on the physical factors that cause ambiguity in the relationship between wave spectra and the spectra of infrasound generated by them. In this paper, the change in the shape of the infrasound spectrum is analyzed within the framework of numerical simulation. Well-known surface sea wave spectral models are used for analysis. It is shown that the main factors influencing the shape and peak value of the infrasound spectrum are the difference in the frequencies of the spectral peaks of swell ωw1 and wind waves ωw2, as well as the change in the angle between the directions of their propagation. For the same spectrum of surface waves, when ωw1 ≈ ωw2, the maximum value of the infrasound spectrum peak occurs at the opposite direction of wave propagation, it decreases by more than 5 times when the directions are mutually orthogonal, it decreases by two orders of magnitude, when the directions coincide. With an increase in the difference between ωw1 and ωw2, the frequency range where the generation of infrasound is determined by the interaction of swell and wind waves narrows.
sea surface, waves, generation of infrasound, infrasound spectrum
1. Ardhuin F., Balanche A., Stutzmann E., et al. From seismic noise to ocean wave parameters: General methods and validation // Journal of Geophysical Research: Oceans. — 2012. — Vol. 117, no. C5. — https://doi.org/10.1029/2011jc007449.
2. Ardhuin F., Stutzmann E., Schimmel M., et al. Ocean wave sources of seismic noise // Journal of Geophysical Research. — 2011. — Vol. 116, no. C9. — https://doi.org/10.1029/2011jc006952. EDN: https://elibrary.ru/XOSFCJ
3. Babanin A. V. and Soloviev Yu. P. Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays // Marine and Freshwater Research. — 1998. — Vol. 49, no. 2. — P. 89–101. — https://doi.org/10.1071/mf96126. EDN: https://elibrary.ru/XJJHZV
4. Brekhovskikh L. M. On the generation of sound waves in a liquid by surface wave // Akusticheskij Zhurnal. — 1966a. — Vol. XII, no. 3. — P. 376–379.
5. Brekhovskikh L. M. Sound waves under water caused by surface waves in the ocean // Izvestiya AN SSSR. Fizika atmosfery i okeana. — 1966b. — Vol. 2, no. 9. — P. 970–980. — (In Russian).
6. Bromirski P. D., Flick R. E. and Graham N. E. Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the NE Pacific // Journal of Geophysical Research: Oceans. — 1999. — Vol. 104, no. C9. — P. 20753–20766. — https://doi.org/10.1029/1999jc900156.
7. Chupin V. A. and Gusev E. S. Infrasound oscillations caused by extratropical cyclones in the sea of Japane // Hydrosphere. Hazard processes and phenomena. — 2022. — Vol. 3, no. 4. — P. 346–354. — https://doi.org/10.34753/HS.2021.3.4.346. — (In Russian).
8. Cutroneo L., Ferretti G., Barani S., et al. Near Real-Time Monitoring of Significant Sea Wave Height through Microseism Recordings: Analysis of an Exceptional Sea Storm Event // Journal of Marine Science and Engineering. — 2021. — Vol. 9, no. 3. — P. 319. — https://doi.org/10.3390/jmse9030319. EDN: https://elibrary.ru/EWZZWW
9. Davy C., Barruol G., Fontaine F. R., et al. Tracking major storms from microseismic and hydroacoustic observations on the seafloor // Geophysical Research Letters. — 2014. — Vol. 41, no. 24. — P. 8825–8831. — https://doi.org/10.1002/2014gl062319.
10. Dolgikh G. I. and Mukomel D. V. Dependence of microseism variation periods upon the cyclone propagation velocity and direction // Doklady Earth Sciences. — 2004. — Vol. 394, no. 1. — P. 141–144. EDN: https://elibrary.ru/LIRHGZ
11. Donelan M. A., Hamilton J. and Hui W. H. Directional spectra of wind-generated waves // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. — 1985. — Vol. 315, no. 1534. — P. 509–562. — https://doi.org/10.1098/rsta.1985.0054.
12. Donne S., Nicolau M., Bean C., et al. Wave height quantification using land based seismic data with grammatical evolution // 2014 IEEE Congress on Evolutionary Computation (CEC). — IEEE, 2014. — P. 2909–2916. — https://doi.org/10.1109/cec.2014.6900563. EDN: https://elibrary.ru/YEWCOX
13. Farrell W. E. and Munk W. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor // The Journal of the Acoustical Society of America. — 2013. — Vol. 134, no. 4. — P. 3134–3143. — https://doi.org/10.1121/1.4818780. EDN: https://elibrary.ru/SRTVKJ
14. Hasselmann D. E., Dunckel M. and Ewing J. A. Directional Wave Spectra Observed during JONSWAP 1973 // Journal of Physical Oceanography. — 1980. — Vol. 10, no. 8. — P. 1264–1280. — https://doi.org/10.1175/1520-0485(1980)010<1264:dwsodj>2.0.co;2.
15. Hasselmann K. A statistical analysis of the generation of microseisms // Reviews of Geophysics. — 1963. — Vol. 1, no. 2. — P. 177–210. — https://doi.org/10.1029/RG001i002p00177.
16. Lucas C. and Soares G. Guedes. On the modelling of swell spectra // Ocean Engineering. — 2015. — Vol. 108. — P. 749–759. — https://doi.org/10.1016/j.oceaneng.2015.08.017. EDN: https://elibrary.ru/VFRZUB
17. Mitsuyasu H., Tasai F., Suhara T., et al. Observations of the Directional Spectrum of Ocean Waves Using a Cloverleaf Buoy // Journal of Physical Oceanography. — 1975. — Vol. 5, no. 4. — P. 750–760. — https://doi.org/10.1175/1520-0485(1975)005<0750:ootsdo>2.0.co;2.
18. Naugolnikh K. A. and Rybak S. A. Sound generation due to the interaction of surface waves // Acoustical Physics. — 2003. — Vol. 49, no. 1. — P. 88–90. — https://doi.org/10.1134/1.1537393. EDN: https://elibrary.ru/LIDJAX
19. Rindraharisaona E. J., Cordier E., Barruol G., et al. Assessing swells in La Réunion Island from terrestrial seismic observations, oceanographic records and offshore wave models // Geophysical Journal International. — 2020. — Vol. 221, no. 3. — P. 1883–1895. — https://doi.org/10.1093/gji/ggaa117. EDN: https://elibrary.ru/CWEOCQ
20. Tabulevich V. N., Ponomarev E. A., Sorokin A. G., et al. Standing sea waves, microseisms, and infrasound // Izvestiya, Atmospheric and Oceanic Physics. — 2001. — Vol. 37, no. 2. — P. 218–226. EDN: https://elibrary.ru/LGTYNV
21. Wilson J. D. Modeling Microseism Generation by Inhomogeneous Ocean Surface Waves in Hurricane Bonnie Using the Non-Linear Wave Equation // Remote Sensing. — 2018. — Vol. 10, no. 10. — P. 1624. — https://doi.org/10.3390/rs10101624.
22. Zapevalov A. S. The effect of anisotropy of a rough sea surface on the generation of acoustic radiation // Acoustical Physics. — 2007. — Vol. 53, no. 1. — P. 75–79. — https://doi.org/10.1134/s1063771007010095. EDN: https://elibrary.ru/MJSBMH
23. Zapevalov A. S. Impact of the sea waves’ skewness and group structure on the infrasound generation by the sea surface // Physical Oceanography. — 2023. — Vol. 30, no. 2. — P. 160–170. — https://doi.org/10.29039/1573-160X-2023-2-160-170. EDN: https://elibrary.ru/RYRZGY
24. Zapevalov A. S. and Pokazeev K. V. Modeling the spectrum of infrasonic hydroacoustic radiation generated by the sea surface under storm conditions // Acoustical Physics. — 2016. — Vol. 62, no. 5. — P. 554–558. — https://doi.org/10.1134/S1063771016050195. EDN: https://elibrary.ru/XFNRVF



