employee from 01.01.1994 to 01.01.2024
Moscow, Moscow, Russian Federation
Russian Federation
UDK 551.46.09 Прикладная океанология
UDK 551.46.07 Океанологические лаборатории и работы в море. Экспедиции и плавания
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
This article describes a new, efficient, and quick method for conducting field measurements to create a three-dimensional model of ice formations. The method involves the use of a total station geodetic instrument, a powerful LOZA georadar, and an unmanned aerial vehicle with a camera. The technique is especially useful for measuring unstable ice formations with horizontal dimensions ranging from 50 to 300 meters. Examples of applying this method during winter fieldwork on the Sakhalin Island's eastern shelf in 2019 are provided.
field measurements of ice characteristics. ice formations, 3-dimensional model, georadar LOZA, unmanned aerial vehicle
1. Astafyev, V. N., G. A. Surkov, and P. A. Truskov (1997), Ice ridges and stamukhas of the Sea of Okhotsk, 208 pp., ProgressPogoda, St. Petersburg (in Russian).
2. Borodkin, V. A., A. S. Paramzin, and S. V. Khotchenkov (2018), Joint use of a multirotor-type unmanned aerial vehicle and a round-view sonar to create a three-dimensional digital model of the relief of an ice object, Russian Polar Research, 34(4), 31–35 (in Russian), EDN: THMFJF.
3. Eltner, A., A. Kaiser, C. Castillo, G. Rock, F. Neugirg, and A. Abellán (2016), Image-based surface reconstruction in geomorphometry - merits, limits and developments, Earth Surface Dynamics, 4(2), 359–389, https://doi.org/10.5194/ESURF-4-359-2016.
4. GOST R 58283-2018 (2018), Petroleum and natural gas industries. Arctic operations. Account of ice actions in designing the offshore platforms, 36 pp., Standartinform, Moscow (in Russian).
5. Koci, J., B. Jarihani, J. X. Leon, R. Sidle, S. Wilkinson, and R. Bartley (2017), Assessment of UAV and Ground-Based Structure from Motion with Multi-View Stereo Photogrammetry in a Gullied Savanna Catchment, ISPRS International Journal of Geo-Information, 6(11), 328, https://doi.org/10.3390/ijgi6110328.
6. Mironov, Ye. U., Yu. P. Gudoshnikov, and V. N. Smirnov (2015), Current methods of ice studies and explorations on the shelf of the Arctic Seas, Problemy Arktiki i Antarktiki, 103(1), 57–68 (in Russian), EDN: TXNZVX.
7. Morozov, P. A., A. I. Berkut, P. L. Vorovsky, F. P. Morozov, and S. V. Pisarev (2021), Measuring sea ice thickness with the LOZA georadar, Russian Journal of Earth Sciences, 21(4), 1–9, https://doi.org/10.2205/2021ES000767.
8. Pisarev, S. V. (2016), Winter expeditionary research in the water area of the Yuzhno-Kirinskoye field in 2016, Russian Polar Research, 25(3), 8–11 (in Russian), EDN: SFDZBK.
9. Pisarev, S. V., and A. S. Tsvetsinskiy (2021), One year old layered ice on the shelf of the Sakhalin Island. The problem of identification and a potential threat to offshore structures, in GEOEURASIA-2021. Geological exploration in modern realities, pp. 232–235, PoliPRESS (in Russian), EDN: PLDRMQ.
10. World Meteorological Organization (WMO) (2014), WMO Sea-Ice Nomenclature. WMO No. 259, WMO, Geneva.